Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности. Томас Дэвенпорт

Чтение книги онлайн.

Читать онлайн книгу Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности - Томас Дэвенпорт страница 3

Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности - Томас Дэвенпорт

Скачать книгу

новости компании, индикаторы настроений на рынке и существующий портфель клиента, а затем давать рекомендации банковским менеджерам по работе с клиентами и самим клиентам. Но директор по информационным технологиям DBS Дэвид Гледхилл отметил, что технология не готова решить столь серьезную проблему:

      Мы начали очень рано, и в то время технология Watson еще не достигла зрелости. Она не была готова стать новейшим разносторонним консультантом по благосостоянию, как планировали и DBS, и IBM. Приступив к реализации этого проекта, мы опередили время. Оглядываясь назад, можно понять, что технология не была достаточно зрелой. Она не была подготовлена для многих из наших сценариев использования. Отчасти проблема заключалась в том, что программное обеспечение не могло понять множество диаграмм и графиков, которые должно было понимать. Кроме того, исследовательские отчеты банка были представлены в различных форматах, а это затрудняло анализ данных системой Watson без особого вмешательства человека. Таким образом, хотя мы и разработали пилотного робота-советника, он был вдвое менее эффективен и продуктивен, чем средний менеджер по работе с клиентами. Мы извлекли из этого урок и остановили проект на ранней стадии.

      Гледхилл и его коллеги продолжают оценивать новые технологии, которые могут быть полезны для совершенствования интеллектуального робота-советника, но пока они ничего не нашли. Однако по-прежнему верят в ценность ИИ. Они сосредоточили внимание на важных, но несколько менее масштабных проблемах своего бизнеса, которые могут быть хотя бы частично решены с помощью когнитивных технологий.

      Проекты ИИ, реализуемые DBS, охватывают широкий спектр областей, но большинство из них касается операционных процессов. Например, банк использует модели машинного обучения для прогнозирования необходимости пополнения банкоматов наличными. Если раньше наличные в банкомате заканчивались в среднем раз в три месяца, то теперь этот показатель составляет раз в 55 лет, а количество поездок для пополнения банкоматов сократилось более чем на 10 %.

      В сфере кадров DBS прогнозирует отток своих продажников. На основе ряда факторов, выявленных моделями машинного обучения (включая время отпуска, количество больничных, а также скорость ответов на электронные письма), банк может с 85 %-ной вероятностью предсказывать, уволится ли кто-либо из сотрудников, за три месяца до увольнения.

      Банк также использует ИИ, чтобы выявлять мошенничество в области торговли ценными бумагами, строить алгоритмические модели кредитования, управлять чат-ботами в службе поддержки клиентов, а также выполнять ряд других задач. Особенно большую роль ИИ играет в исключительно цифровом банке DBS в Индии, где работает на 90 % меньше сотрудников, чем в обычном банке. Во всем банке взаимодействия клиентов с ИИ на 15 % снижают количество звонков в службу поддержки.

      Гледхилл прокомментировал изменение фокуса ИИ в DBS:

      Первоначальный робот-советник

Скачать книгу