The Creativity Code. Marcus du Sautoy

Чтение книги онлайн.

Читать онлайн книгу The Creativity Code - Marcus du Sautoy страница 14

Автор:
Жанр:
Серия:
Издательство:
The Creativity Code - Marcus du Sautoy

Скачать книгу

Martin’s ruthless pen which has cut short some of the other key characters in the third volume. This is the mark of a good algorithm: it can be used in multiple scenarios. This one can tell you something useful from football to Game of Thrones.

      Maths, the secret to a happy marriage

      Sergey Brin and Larry Page may have cracked the code to steer you to websites you don’t even know you’re looking for, but can an algorithm really do something as personal as find your soulmate? Visit OKCupid and you’ll be greeted by a banner proudly declaring: ‘We use math to find you dates’.

      These dating websites use a ‘matching algorithm’ to search through profiles and match people up according to their likes, dislikes and personality traits. They seem to be doing a pretty good job. In fact, the algorithms seem to be better than we are on our own: recent research published in the Proceedings of the National Academy of Sciences looked at 19,000 people who married between 2005 and 2012 and found that those who met online were happier and had more stable marriages.

      The first algorithm to win its creators a Nobel Prize, originally formulated by two mathematicians, David Gale and Lloyd Shapley, in 1962, used a matching algorithm to solve something called ‘the Stable Marriage Problem’. Gale, who died in 2008, missed out on the award, but Shapley shared the prize in 2012 with the economist Alvin Roth, who saw the importance of the algorithm not just to the question of relationships but also to social problems including assigning health care and student places fairly.

      Shapley was amused by the award: ‘I consider myself a mathematician and the award is for economics,’ he said at the time, clearly surprised by the committee’s decision. ‘I never, never in my life took a course in economics.’ But the mathematics he cooked up has had profound economic and social implications.

      The Stable Marriage Problem that Shapley solved with Gale sounds more like a parlour game than a piece of cutting-edge economic theory. To illustrate the precise nature of the problem, imagine you’ve got four heterosexual men and four heterosexual women. They’ve been asked to list the four members of the opposite sex in order of preference. The challenge for the algorithm is to match them up in such a way as to come up with stable marriages. What this means is that there shouldn’t be a man and woman who would prefer to be with one another than with the partner they’ve been assigned. Otherwise there’s a good chance that at some point they’ll leave their partners to run off with one another. At first sight it isn’t at all clear, even with four pairs, that it is possible to arrange this.

      Let’s take a particular example and explore how Gale and Shapley could guarantee a stable pairing in a systematic and algorithmic manner. The four men will be played by the kings from a pack of cards: King of Spades, King of Hearts, King of Diamonds and King of Clubs. The women are the corresponding queens. Each king and queen has listed his or her preferences:

      For the kings:

Image Missing

      For the queens:

Image Missing

      Now suppose you were to start by proposing that each king be paired with the queen of the same suit. Why would this result in an unstable pairing? The Queen of Clubs has ranked the King of Clubs as her least preferred partner so frankly she’d be happier with any of the other kings. And check out the King of Hearts’ list: the Queen of Hearts is at the bottom of his list. He’d certainly prefer the Queen of Clubs over the option he’s been given. In this scenario, we can envision the Queen of Clubs and the King of Hearts running away together. Matching kings and queens via their suits would lead to unstable marriages.

      How do we match them so we won’t end up with two cards running off with each other? Here is the recipe Gale and Shapley cooked up. It consists of several rounds of proposals by the queens to the kings until a stable pairing finally emerges. In the first round of the algorithm, the queens all propose to their first choice. The Queen of Spades’ first choice is the King of Hearts. The Queen of Hearts’ first choice is the King of Clubs. The Queen of Diamonds chooses the King of Spades and the Queen of Clubs proposes to the King of Hearts. So it seems that the King of Hearts is the heart-throb of the pack, having received two proposals. He chooses which of the two queens he prefers, which is the Queen of Clubs, and rejects the Queen of Spades. So we have three provisional engagements, and one rejection.

       First round

Image Missing

      The rejected queen strikes off her first-choice king and in the next round moves on to propose to her second choice: the King of Spades. But now the King of Spades has two proposals. His first proposal from round one, the Queen of Diamonds, and a new proposal from the Queen of Spades. Looking at his ranking, he’d actually prefer the Queen of Spades. So he rather cruelly rejects the Queen of Diamonds (his provisional engagement on the first round of the algorithm).

       Second round

Image Missing

      Which brings us to round three. In each round, the rejected queens propose to the next king on their list and the kings always go for the best offer they receive. In this third round the rejected Queen of Diamonds proposes to the King of Diamonds (who has been standing like that kid who never gets picked for the team). Despite the fact that the Queen of Diamonds is low down on his list, he hasn’t got a better option, as the other three queens prefer other kings who have accepted them.

       Third round

Image Missing

      Finally everyone is paired up and all the marriages are stable. Although we have couched the algorithm in terms of a cute parlour game with kings and queens, the algorithm is now used all over the world: in Denmark to match children to day-care places; in Hungary to match students to schools; in New York to allocate rabbis to synagogues; and in China, Germany and Spain to match students to universities. In the UK it has been used by the National Health Service to match patients to organ donations, resulting in many lives being saved.

      And it is building on top of the puzzle solved by Gale and Shapley that the modern algorithms which run our dating agencies are based. The problem is more complex since information is incomplete. Preferences are movable and relative, and shift even within relationships from day to day. But essentially the algorithms are trying to match people with preferences that will lead to a stable and happy pairing. And the evidence suggests that the algorithms could well be better than leaving it to human intuition.

      You might have detected an interesting asymmetry in the algorithm that Gale and Shapley cooked up. We got the queens to propose to the kings. Would it have mattered if we had invited the kings to propose to the queens instead? Rather strikingly it does. You would end up with a different stable pairing if you applied the algorithm by swapping kings and queens.

      The Queen of Diamonds would end up with the King of Hearts and the Queen of Clubs with the King of Diamonds. The two queens swap partners, but now they’re paired up with slightly lower choices. Although both pairings are stable, when queens propose to kings, the queens end up with the best pairings they could hope for. Flip things around and the kings are better off.

      Medical students in America looking for residencies realised that hospitals were using this algorithm to assign

Скачать книгу