Физика фондового рынка. Краткая история предсказаний непредсказуемого. Джеймс Уэзеролл

Чтение книги онлайн.

Читать онлайн книгу Физика фондового рынка. Краткая история предсказаний непредсказуемого - Джеймс Уэзеролл страница 7

Физика фондового рынка. Краткая история предсказаний непредсказуемого - Джеймс Уэзеролл

Скачать книгу

все меньше и меньше, чем больше раз вы подбросите монетку. Вероятность падения монетки орлом в 50 % случаев будет выше, если вы подбросите монетку 100 раз, чем если вы подбросите ее всего два раза. В рассуждениях Бернулли есть нечто сомнительное, поскольку он использует идеи из теории вероятности, чтобы объяснить, что означает сама вероятность. Бернулли не осознавал (это было полностью обосновано только в ХХ веке), что можно доказать: если вероятность падения монетки орлом составляет 50 % и подбрасывать монетку бесконечное число раз, то (практически) наверняка в половине случаев выпадет орел. Или в случае со стратегией де Мере, если бросать кости бесконечное число раз, в каждой игре ставя на 6, практически гарантирована победа в 51,7477 % игр. Это закон больших чисел, и он подтверждает одно из наиболее важных толкований теории вероятности[26].

      Паскаль не был поклонником азартных игр, поэтому даже забавно, что один из главных его вкладов в математику связан именно с этим. Еще более иронично то, что чуть ли не самую большую известность ему принесло… пари, пари Паскаля. В конце 1654 года с Паскалем случилось нечто мистическое, и этот случай изменил его жизнь. Он перестал заниматься математикой, стал адептом индивидуалистических принципов голландского теолога Корнелия Янсения, противоречивого христианского движения в католицизме в XVII веке. И начал активно писать о вопросах теологии. Пари Паскаля, как это теперь называется, впервые появилось в его религиозных работах. Поверить в Бога, писал Паскаль, – это как сделать ставку на то, есть ли Бог или нет. Убеждения же человека сводятся к тому, что он ставит на одно или на другое. Но прежде чем сделать ставку, человек хочет знать, каковы его шансы и что его ожидает, если он выиграет или проиграет. Паскаль рассуждал так: если вы делаете ставку на то, что Бог есть, соответствующим образом проживаете жизнь, и оказывается, что вы были правы, то обретете бессмертие в раю. Если окажется, что вы не правы, то просто умрете и ничего не произойдет. Вы также просто умрете, если поставите на то, что Бога нет, и выиграете. Но если поставите на то, что Бога нет, и проиграете, то будете осуждены на вечные муки. Решение этой дилеммы простое: христианская вера рациональная, а оборотная сторона атеизма слишком пугающая.

      Несмотря на увлеченность теорией случая, Луи Башелье не слишком везло в жизни. Своей работой он внес фундаментальный вклад в физику, финансы, математику. Но так и не вышел за рамки академической респектабельности. Всякий раз, когда на пути Башелье начинала маячить удача, она ускользала от него в самый последний момент. Родившись в 1870 году в Гавре, шумном портовом городе на северо-западе Франции, молодой Луи был перспективным студентом. Он блистал знаниями математики в старших классах лицея, в октябре 1888 года получил степень бакалавра естественных наук. У него был достаточно хороший аттестат, с которым он вполне мог рассчитывать на учебу в одном из элитных французских университетов, дипломы которых служили залогом того, что их обладателям уготована

Скачать книгу


<p>26</p>

Подробнее о законе больших чисел см. у Каселла и Бергера (2002 г.) и Биллингсли (1995 г.). См. также работу Башелье (1937 г.).