Ice Adhesion. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Ice Adhesion - Группа авторов страница 31

Ice Adhesion - Группа авторов

Скачать книгу

Nose, and X. W. Du, Superhydrophobic surfaces: Are they really ice-repellent?, Langmuir, 27, 25-29 (2011).

      121 121. T. L. Anderson, Fracture Mechanics: Fundamentals and Applications, 3rd edition, Taylor & Francis, Boca Raton, FL (2005).

      122 122. R. Menini and M. Farzaneh, Advanced icephobic coatings, J. Adhesion Sci. Technol, 25, 971-992 (2011).

      123 123. M. Nosonovsky and V. Hejazi, Why superhydrophobic surfaces are not always icephobic, ACS Nano, 6, 8488-8491 (2012).

      124 124. P. V. Hobbs, Ice Physics, Clarendon Press, Oxford, UK (1974).

      125 125. P. Desai and C. Ho, Thermal linear expansion of nine selected AISI stainless steels, Report, American Iron and Steel Institute, Washington, D.C. (1978).

      126 126. D. Quéré, Non-sticking drops, Rep. Prog. Phys., 68, 2495-2532 (2005).

      127 127. D. Dowson, History of Tribology, 2nd edition, Professional Engineering Publishing, London, UK (1998).

      128 128. B. N. J. Persson, Sliding Friction: Physical Principles and Applications, 2nd edition, Springer, Berlin (2000).

      129 129. M. Faraday, XXIV. On regelation, and on the conservation of force, The London, Edinburgh, and Dublin Philos. Mag. J. Sci., 17, 162-169 (1859).

      130 130. J. Thomson and W. Thomson, I. On recent theories and experiments regarding ice at or near its melting-point, Proc. R. Soc. London, 10, 151-160 (1860).

      131 131. O. Reynolds, A. W. Brightmore, and W. H. Moorby, Papers on Mechanical and Physical Subjects, Cambridge University Press, Cambridge, UK (1900).

      132 132. F. P. Bowden, T. P. Hughes, and C. H. Desch, The mechanism of sliding on ice and snow, Proc. R. Soc. London Ser. A, 172, 280-298 (1939).

      133 133. A.-M. Kietzig, S. G. Hatzikiriakos, and P. Englezos, Physics of ice friction, J. Appl. Phys., 107, 081101 (2010).

      134 134. F. P. Bowden, Introduction to the discussion: the mechanism of friction, Proc. R. Soc. London Ser. A, 212, 440-449 (1952).

      135 135. B. Bhushan, Introduction to Tribology, John Wiley & Sons, New York (2002).

      136 136. F. P. Bowden and D. Tabor, The Friction and Lubrication of Solids, Oxford University Press, Oxford, UK (2001).

      137 137. I. Kozlov and A. Shugai, Experimental study of high-speed friction on ice, Fluid Dyn., 26, 145-147 (1991).

      138 138. S. C. Colbeck, The kinetic friction of snow, J. Glaciol., 34, 78-86 (1988).

      139 139. A. J. Fowler and A. Bejan, Contact melting during sliding on ice, Int. J. Heat Mass Transfer, 36, 1171-1179 (1993).

      140 140. V. F. Petrenko and R. W. Whitworth, Physics of Ice, Oxford University Press, Oxford (2002).

      141 141. N. H. Fletcher, Surface structure of water and ice, Philosoph. Mag., 7, 255-269 (1962).

      142 142. N. H. Fletcher, Surface structure of water and ice II. a revised model, Philosoph. Mag., 18, 1287-1300 (1968).

      143 143. R. Lacmann and I. N. Stranski, The growth of snow crystals, J. Cryst. Growth, 13-14, 236-240 (1972).

      144 144. J. G. Dash, H. Fu, and J. S. Wettlaufer, The premelting of ice and its environmental consequences, Rep. Prog. Phys., 58, 115-167 (1995).

      145 145. N. Fukuta, An origin of the equilibrium liquid-like layer on ice, J. Phys. Colloques, 48, 503-509 (1987).

      146 146. L. Makkonen, Surface melting of ice, J. Phys. Chem. B, 101, 6196-6200 (1997).

      147 147. G.-J. Kroes, Surface melting of the (0001) face of TIP4P ice, Surf. Sci., 275, 365-382 (1992).

      148 148. J. P. Devlin and V. Buch, Surface of ice as viewed from combined spectroscopic and computer modeling studies, J. Phys. Chem., 99, 16534-16548 (1995).

      149 149. Y. Furukawa and H. Nada, Anisotropic surface melting of an ice crystal and its relationship to growth forms, J. Phys. Chem. B, 101, 6167-6170 (1997).

      150 150. N. Materer, U. Starke, A. Barbieri, M. A. Van Hove, G. A. Somorjai, G. J. Kroes, and C. Minot, Molecular surface structure of ice(0001): dynamical low-energy electron diffraction, total-energy calculations and molecular dynamics simulations, Surf. Sci., 381, 190-210 (1997).

      151 151. P. Oksanen and J. Keinonen, The mechanism of friction of ice, Wear, 78, 315-324 (1982).

      152 152. A.-M. Kietzig, S. G. Hatzikiriakos, and P. Englezos, Ice friction: The effects of surface roughness, structure, and hydrophobicity, J. Appl. Phys., 106, 024303 (2009).

      153 153. S. J. Calabrese, R. Buxton, and G. Marsh, Frictional characteristics of materials sliding against ice, Lubrication Eng., 36, 283-289 (1980).

      Note

      1 * Corresponding author: [email protected]

       Youmin Hou*, Hans-Jürgen Butt and Michael Kappl†

       Department of Physics at Interfaces, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, Germany

       Abstract

      Nucleation, in which a new phase is spontaneously formed in an original phase, is normally regarded as the initial step for the phase transitions, for example, water condensation and icing. The ability to control nucleation is of significant importance for scientific research and many industrial applications, particularly for water and ice. Despite different properties in bulk configuration, the formation processes of nanoscopic water and ice nuclei have a lot in common. The study of nucleation can be traced back to the pioneering work of Fahrenheit in the 1700s, while the understanding of nucleation remains inadequate due to the difficulty in characterizing nucleation dynamics with conventional measurement tools. In this chapter, we present an overview of the most commonly used nucleation theory for analyzing the initial water condensation and ice crystallization, and the recent progress in the field of controlling heterogeneous nucleation on solid surfaces.

      Keywords: Nucleation theory, condensation, icing, hybrid wettability

      Phase transitions of water play a prominent role in many natural processes like fog and cloud formation, precipitation as rain, snow or hail. In technical applications such as heat exchangers, fog harvesting or water desalination, high nucleation and condensation rates are favored; while in the case of anti-icing coatings, one targets for suppression of nucleation. These phase transitions occur when the original phase is supersaturated with respect to a more stable one. The formation of a new phase within a metastable original phase (i.e., mother phase), however, does not begin in a continuous manner. It rather arises spontaneously as a result of fluctuations of temperature and density in the original phase when a critical supersaturation of vapor or a critical supercooling of liquid water is exceeded. This spontaneous process is called nucleation.

Скачать книгу