Ice Adhesion. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Ice Adhesion - Группа авторов страница 46

Ice Adhesion - Группа авторов

Скачать книгу

c03_Inline_14_10.jpg

      Where Ai is ice-water interface area and Ao is ice-air interface area. By substituting Eq. (3.23) and (3.30) in Eq. (3.31), the following equation is obtained,

      (3.32)c03_Inline_15_16.jpg

      Now, we can find an equation for ice growth rate. Through solution of heat equation in spherical coordinates, we have,

      (3.33)c03_Inline_15_17.jpg

      T(r = ri) = Tf and T(r = r0) = Ts are ice-water and ice-air interface temperatures, respectively. The boundary conditions are written as,

c03_Inline_15_19.jpg c03_Inline_15_20.jpg c03_Inline_16_11.jpg

      We define,

c03_Inline_16_12.jpg

      Thus,

      (3.35)c03_Inline_16_13.jpg

      (3.36)c03_Inline_16_14.jpg

      The surface temperature is as follows:

c03_Inline_16_15.jpg

      where c03_Inline_16_16.jpg and θs = TsT. By substitution of C1 and C2, the following equation for θs is obtained:

c03_Inline_17_12.jpg

      Thus, c03_Inline_17_18.jpg is written as:

c03_Inline_17_13.jpg

      And c03_Inline_17_19.jpg may be simplified to

      Where Biot number is defined as:

c03_Inline_17_15.jpg

      By writing the energy balance at the ice-water interface one has:

      (3.38)c03_Inline_17_16.jpg

c03_Inline_18_13.jpg

      And by simplification of this equation, one finds

c03_Inline_18_14.jpg

      Through integration of both sides:

c03_Inline_18_15.jpg

      And we have the initial condition for ice growth as:

c03_Inline_18_16.jpg

      Thus,

      A

Скачать книгу