Functional Metal-Organic Frameworks. Ali Morsali

Чтение книги онлайн.

Читать онлайн книгу Functional Metal-Organic Frameworks - Ali Morsali страница 14

Автор:
Жанр:
Серия:
Издательство:
Functional Metal-Organic Frameworks - Ali Morsali

Скачать книгу

In one possible mechanism, it is reported that benzaldehyde can be activated through the interaction with an amine group and the formation of imine through a new (amine)N= C(benzaldehyde) covalent bond that can be followed by the rearrangement and addition of malonitrile (Figure 2.6) [18]. In other mechanism it is mentioned that benzaldehyde activation in Henry reaction is done through a noncovalent Lewis base–acid interactions between Lewis basic catalytic site with the carbonyl C atom of benzaldehyde [40].

      Lewis basicity and hydrogen-bond donation/accepting are common and well-known chemical properties of amine functions which applied extensively in development of functional MOFs. Anyway, there are some of other chemical properties which are interesting for fabrication of FMOFs. For example, amine function is able to interact with donor acceptor interactions. Through this mechanism, amine decorated MOFs applied for improved Li-storage capacity [41] through host-guest interactions between Li and amine groups (N atoms) and accelerated I2 removal [42] through

      In synthetic organic chemistry it is known that aromatic rings with electron donor groups like amine could participate in electrophilic substitution reactions. Also, aromatic amine groups could be converted to diazonium or other products like reduction to hydrogen. These principal roles in chemistry of arylamines applied in construction of highly efficient removal and sensing of Cl2 [43], NO [44] and NO2 [45] gases with amine decorated MOFs.

      In another work by the same group, UiO-66-NH2 applied for removal of 1.4g·g−1 NO2(g) [45]. Experimental analyses show that NO2(g) is adsorbed through different types removal mechanisms (Figure 2.7b). At low loading, NO2(g) first adsorbs within the pores of the MOF and loading increases with decreasing the temperature indicating that physical adsorption has a major impact on removal. At higher loading, the organic ligand react with oxidant NO2(g) molecules in multiple locations.

      Photoactive MOFs could be developed by immobilizing photoactive catalytic sites in MOF materials. Especially, practical adsorption of solar light could be easily attained by functionalization of the metal ions or the organic ligands. Amine function is recognized as a photosensitizer group in the structure of MOFs for the improvement of solar-light photocatalytic activity in MOFs [46–49]. 2-aminoterphthalic acid is well-known linker for construction of amine decorated MOFs like NH2-UiO-66, NH2-MIL-125 and other MOFs.

Скачать книгу