Security Engineering. Ross Anderson
Чтение книги онлайн.
Читать онлайн книгу Security Engineering - Ross Anderson страница 76
5.2.5 Asymmetric primitives
Finally, some modern cryptosystems are asymmetric, in that different keys are used for encryption and decryption. So, for example, most web sites nowadays have a certificate containing a public key with which people can encrypt their session using a protocol called TLS; the owner of the web page can decrypt the traffic using the corresponding private key. We'll go into the details later.
There are some pre-computer examples of this too; perhaps the best is the postal service. You can send me a private message by addressing it to me and dropping it into a post box. Once that's done, I'm the only person who'll be able to read it. Of course, many things can go wrong: you might get the wrong address for me (whether by error or as a result of deception); the police might get a warrant to open my mail; the letter might be stolen by a dishonest postman; a fraudster might redirect my mail without my knowledge; or a thief might steal the letter from my doormat. Similar things can go wrong with public key cryptography: false public keys can be inserted into the system, computers can be hacked, people can be coerced and so on. We'll look at these problems in more detail in later chapters.
Another asymmetric application of cryptography is the digital signature. The idea here is that I can sign a message using a private signature key and then anybody can check this using my public signature verification key. Again, there are pre-computer analogues in the form of manuscript signatures and seals; and again, there is a remarkably similar litany of things that can go wrong, both with the old way of doing things and with the new.
5.3 Security models
Before delving into the detailed design of modern ciphers, I want to look more carefully at the various types of cipher and the ways in which we can reason about their security.
Security models seek to formalise the idea that a cipher is “good”. We've already seen the model of perfect secrecy: given any ciphertext, all possible plaintexts of that length are equally likely. Similarly, an authentication scheme that uses a key only once can be designed so that the best forgery attack on it is a random guess, whose probability of success can be made as low as we want by choosing a long enough tag.
The second model is concrete security, where we want to know how much actual work an adversary has to do. At the time of writing, it takes the most powerful adversary in existence – the community of bitcoin miners, burning about as much electricity as the state of Denmark – about ten minutes to solve a 68-bit cryptographic puzzle and mine a new block. So an 80-bit key would take them
The third model, which many theoreticians now call the standard model, is about indistinguishability. This enables us to reason about the specific properties of a cipher we care about. For example, most cipher systems don't hide the length of a message, so we can't define a cipher to be secure by just requiring that an adversary not be able to distinguish ciphertexts corresponding to two messages; we have to be more explicit and require that the adversary not be able to distinguish between two messages
The fourth model is the random oracle model, which is not as general as the standard model but which often leads to more efficient constructions. We call a cryptographic primitive pseudorandom if there's no efficient way of distinguishing it from a random function of that type, and in particular it passes all the statistical and other randomness tests we apply. Of course, the cryptographic primitive will actually be an algorithm, implemented as an array of gates in hardware or a program in software; but the outputs should “look random” in that they're indistinguishable from a suitable random oracle given the type and the number of tests that our model of computation permits.
To visualise a random oracle, we might imagine an elf sitting in a black box with a source of physical randomness and some means of storage (see Figure 5.9) – represented in our picture by the dice and the scroll. The elf will accept inputs of a certain type, then look in the scroll to see whether this query has ever been answered before. If so, it will give the answer it finds there; if not, it will generate an answer at random by throwing the dice, and keep a record for future reference. We'll further assume finite bandwidth – the elf will only answer so many queries every second. What's more, our oracle can operate according to several different rules.