Biopolymers for Biomedical and Biotechnological Applications. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Biopolymers for Biomedical and Biotechnological Applications - Группа авторов страница 18

Biopolymers for Biomedical and Biotechnological Applications - Группа авторов

Скачать книгу

transient weak gels. Recently, a hydrogel made from xanthan and galactomannan from the seeds of the Brazilian native tree Schizolobium parahyba was reported by Koop et al. [162]. The binary hydrogel was loaded with curcumin for topical and cutaneous wound applications. The results revealed that such hydrogels allowed prolonged exposure to the skin without any irritation and the possibility to treat skin diseases such as psoriasis. In other study, xanthan was chemically crosslinked with starch to perform hydrogels for drug delivery applications [163]. Starch–xanthan gum hydrogels exhibited selective permeability depending on drug charges and revealed to be a promising material for controlled release of several drugs.

      As described, a wide and diverse range of polysaccharides have been used as attractive materials to design and fabrication of hydrogels [139,141]. Among others, remarkable properties of microbial polysaccharides make them promising materials for different biomedical applications including tissue engineering, drug delivery, and cell therapies.

      MNPs are valuable nanostructures with proven applicability in areas such as molecular diagnostics and biomedicine [164,165]. Their unique physical properties can be tailored based on the size and composition of the inorganic material that can include noble metals (e.g. gold, silver), magnetic elements (e.g. iron, cobalt), or semiconductors (e.g. carbon nanotubes) [164]. The encapsulation of such MNPs in an inorganic (e.g. ceramic) or organic (e.g. biopolymeric) matrix generates multiphase materials (nanocomposites), wherein the synergetic effect between the components adds novel features to this material. Over the past years, the interest in the study and development of nanocomposites has grown considerably due to their valuable physical properties and countless applications that range from packaging to biomedicine [166].

      More recently, it has been studied the use of biological polymers in the production of nanocomposites (bionanocomposites). The wide diversity of available natural polymers with distinct structures and properties has driven the interest toward the development of novel biopolymer nanocomposites with unique or improved functionalities. Unlike synthetic polymers, biopolymers have inherent favorable interaction with living systems [78]. Moreover, due to their chemical and structural diversity, biopolymers can provide excellent matrices for incorporation of different active substances (e.g. MNPs, hydrophilic and hydrophobic drugs), being more sustainable and having limited environmental impact due to their inherent biodegradability [80].

      As previously mentioned, microbial polysaccharides have unique properties suitable to a wide range of applications. Some of these biopolymers are also known to have interactions with biological systems. These properties are usually associated with the composition of the polysaccharide. For instance, FucoPol is a biopolymer with potential antitumor and anti‐inflammatory properties due to its high fucose content. Fucose is a rare sugar with reported anticarcinogenic, antiaging, and anti‐inflammatory properties [4]. For these reasons, microbial polysaccharides can be used in the development of bionanocomposites not only as a matrix material due to their ability to form structured materials (e.g. hydrogels and films) but also as an active substance. This duality presented by the polysaccharides is an important feature for the development of bionanomaterials especially for biomedical applications [168,170].

Illustration depicting the use of microbial polysaccharide-based bionanocomposites with metal nanoparticles for various biotechnological applications.

      Source: Adapted from Manivasagan and Oh 2016 [81] and Escárcega‐González et al. 2018 [171].

Polysaccharide Nanoparticles Possible applications References
Hyaluronan Fe3O4 Contrast agents for MRI; drug delivery systems [169]
Dextran Fe3O4 Cellular MRI and fluorescence imaging; drug delivery systems [169]
Au0 Anticancer agent [171]
Ag0 Sensor for cysteine detection; antibacterial and antifungal agent [169]
Chitosan Fe3O4 Drug delivery systems

Скачать книгу