Structure and Function of the Bacterial Genome. Charles J. Dorman

Чтение книги онлайн.

Читать онлайн книгу Structure and Function of the Bacterial Genome - Charles J. Dorman страница 12

Structure and Function of the Bacterial Genome - Charles J. Dorman

Скачать книгу

by a function encoded by a second, co‐infecting pathogen (Ibberson et al. 2017).

      Loss of competitive fitness arises when a change to the genome (a mutation) renders the bacterium unable to compete with an otherwise genetically identical counterpart. While this can result from the loss of a gene it can also be caused by gene acquisition. Indeed, the negative effect even may arise simply due to the process of expressing the new gene, and not to the effect on the cell of the new gene product (Stoebel et al. 2008a). This illustrates the subtle nature of the causes of competitive fitness differences and their relationships to genome composition and structure.

      We will begin by considering genome composition and structure in the model bacterium E. coli and some others where useful data are available. This survey will provide information about any discernable rules governing these important aspects of microbial cell biology.

      E. coli K‐12 has played a central role in the history of bacterial genetics and bacterial physiology. The original K‐12 isolate came from a stool sample from a human patient suffering from diphtheria and was cultured in Palo Alto, California, USA, in 1922 (Bachmann 1996). This isolate was the ancestor of W1485 from the Joshua Lederberg laboratory, the isolate that was named MG1655 by Mark Guyer (hence ‘MG’). The first E. coli chromosome to be sequenced came from this intensively studied MG1655 strain (Blattner et al. 1997). However, this was not the first bacterial chromosome to have its complete nucleotide sequence determined: that honour belongs to Haemophilus influenza (Fleischmann et al. 1995).

      The E. coli K‐12 chromosome is a single, covalently closed, circular, double‐stranded DNA molecule of 4 639 221 bp (Blattner et al. 1997). Although chromosome circularity is the norm in E. coli, cells in which the chromosome is artificially linearised (with the ends closed by hairpin turns) are viable, show few alterations in gene expression, have normal nucleoid structure, and do not display growth defects (Cui et al. 2007). Thus, the circular nature of the chromosome is not essential for its functionality or for its ability to be replicated and to be segregated at cell division.

      Most of our knowledge about chromosome replication and segregation comes from studying a handful of model organisms: E. coli, Caulobacter crescentus, Vibrio cholerae, and Bacillus subtilis. The focus in this chapter will be on E. coli, with comparisons to other organisms where this is useful.

      Chromosome replication, segregation, and cell division are complex processes that must be coordinated to ensure the successful replication of the cell (Reyes‐Lamothe et al. 2012). The nutritional status of the cell and its metabolic flux are very influential in achieving this coordination and they have a direct bearing on the growth rate of the culture (Wang and Levin 2009).

Скачать книгу