Structure and Function of the Bacterial Genome. Charles J. Dorman

Чтение книги онлайн.

Читать онлайн книгу Structure and Function of the Bacterial Genome - Charles J. Dorman страница 19

Structure and Function of the Bacterial Genome - Charles J. Dorman

Скачать книгу

hence to inhibit the synthesis of new plasmid copies. Antisense RNAs also play important roles in modulating plasmid replication through their ability to interfere with the expression of plasmid‐encoded replication factors (Brantl 2014).

      RK2 and its plasmid relatives use a theta model of DNA replication (Figure 1.12). Plasmid ColE1, the backbone for many cloning vectors used in recombinant DNA technology, also uses theta replication, but differs from RK2‐like plasmids in relying on host factors to open the double‐stranded origin and to prime synthesis (Lilly and Camps 2015; Wang et al. 2004). DNA duplex unwinding is driven by transcription of a stable RNA pre‐primer that forms an R‐loop in the ori region of ColE1. This process is driven by negative supercoiling of the plasmid DNA. RNase H then processes the bound RNA to generate the primer RNA that is then extended by Pol I. This marks the beginning of leading strand DNA synthesis. As the newly synthesised DNA strand makes progress through the plasmid DNA duplex, it base pairs with the template to create a D‐loop that recruits PriA. Pol III takes over leading strand synthesis and initiates the synthesis of the lagging strand; the converging replisomes continue moving until they are at or near the termination site terH (Nakasu and Tomizawa 1992). Gaps between the strands are then filled in by Pol I (Troll et al. 2014).

c01f013

      High copy number plasmids, i.e. those with 10 or more copies per cell, lack genes that are capable of encoding active partitioning machinery (Million‐Weaver and Camps 2014). Random distribution of the multicopy plasmid through the cytosol seems to account for the faithful inheritance of plasmids such as ColE1 (Durkacz and Sherratt 1983). The formation of plasmid multimers poses a risk because this process reduces the copy number of independently segregating units, but multimer resolution systems such as cer/XerCD in ColE1 provide a potent antidote (Summers and Sherratt 1984). This resolution mechanism is a close relative of the chromosomal dif/XerCD system, albeit with additional co‐factors (Section 1.8). Plasmid distribution in the cytosol is likely to be influenced by the presence of other molecules and structures, not least the nucleoid, and nucleoid exclusion does seem to be a factor in confining plasmids to the space just inside the cytoplasmic membrane (Reyes‐Lamothe et al. 2014; Wang et al. 2016; Yao et al. 2007). The plasmids occur in clusters and frequently these clusters are seen at the poles of the cell; clusters are dynamic, they can divide, with some sub‐clusters relocating to the mid‐cell (Yao et al. 2007). The introduction of another type of plasmid produces an even more complex clustering pattern (Diaz et al. 2015; Yao et al. 2007). It appears that multicopy plasmids move between existing in clusters and being alone, and that these forms diffuse randomly within the confines imposed by the nucleoid and other cell structures (Wang 2017).

      Low‐copy number plasmids cannot rely on strategies based on random spatial

Скачать книгу