Cases in Medical Microbiology and Infectious Diseases. Melissa B. Miller

Чтение книги онлайн.

Читать онлайн книгу Cases in Medical Microbiology and Infectious Diseases - Melissa B. Miller страница 13

Cases in Medical Microbiology and Infectious Diseases - Melissa B. Miller

Скачать книгу

cm

      Includes index.

      ISBN 978-1-55581-868-5 (print) -- ISBN 978-1-55581-867-8 (electronic)

      1. Medical microbiology--Case studies. 2. Communicable diseases--Case studies.

      I. Shapiro, Daniel S., 1959- author. II. Miller, Melissa Blair, 1972- author. III. Title.

      QR46.G493 2014

      616.9′041--dc23

      2014016700

      doi:10.1128/9781555818678

      Address editorial correspondence to: ASM Press, 1752 N St., N.W., Washington, DC

      20036-2904, USA.

      Send orders to: ASM Press, P.O. Box 605, Herndon, VA 20172, USA.

      Phone: 800-546-2416; 703-661-1593. Fax: 703-661-1501.

      E-mail: [email protected]

      Online: http://www.asmscience.org

      For Lynn, whose idea this book was.

       Peter

      To those who have taught me in the areas of infectious diseases and clinical microbiology.

       Dan

      For my family, who endured many hours of my writing at home.

       Melissa

      ACKNOWLEDGMENTS

      We would like to thank Claire Kendig for updating the excellent glossary originally compiled by Charles Upchurch, Susan Gibbs, and Paul Walden. She added over 350 new terms for this edition. Many people at UNC Hospitals gathered clinical information and material for us, especially Alan Kerr, Melissa Jones, Amy Sweeney, Sonia Allen, and Eric Weimer. We thank several people who took original photographs, including Billy Williams, Kevin Alby, Vincent Moylan, and Anthony Tran.

      We are grateful for the generosity of many people who supplied cases for this edition of the book. We particularly would like to thank Natalie Bowman and Christopher Lippincott for providing specific cases seen during their fellowship. We also thank colleagues at other institutions who supplied images and cases, especially Joan Barenfanger for the Ehrlichia photos; Lynne Garcia for the Trichomonas and Giardia figures; Krishnan Parayth for the photos of the coccidioidomycosis patient; Thomas Treadwell for the dengue case and selected patient photos; Charles Krasner for the syphilis case; and Svetlana Shalfeeva for the hantavirus case. We thank Alison Holmes and Fiona Cooke for their contributions toward making the Table of Normal Values relevant to health care professionals who work with units that are not commonly in use in the United States. We are grateful to the authors of Color Atlas of Medical Microbiology, Second Edition—Luis M. de la Maza, Marie Pezzlo, Janet Shigei, Grace L. Tan, and Ellena M. Peterson—who graciously allowed us to use figures from that excellent text.

      We especially want to recognize Traci Briggs who trouble-shot editing issues and masterfully managed the flow of information between the authors and ASM Press. We would like to thank Mark C. Via for excellent copyediting. We would particularly like to thank Ellie Tupper, ASM Press, for overseeing this project with diligence, good humor, encouragement, and superior organizational skills.

      Finally, to the many patients and their families from whom we learned, thank you. Any shortcomings in this text are solely the responsibility of the authors.

      INTRODUCTION

      TO THE FOURTH EDITION

      It has been almost a decade since the 3rd edition of this text was published. Much has happened in the world of infectious diseases during this time. First, there has been recognition that the problems of infectious diseases are truly global and that infectious diseases in one part of the world can be quickly transmitted to another. Prime examples of this were the severe acute respiratory syndrome (SARS), the 2009 H1N1 influenza A virus outbreak, and multidrug-resistant Gram-negative bacilli (MDR-GNB). Genes for multidrug resistance can be carried on extrachromosomal genetic elements, facilitating the spread of these drug resistance determinants to highly virulent organisms such as was seen in the Shiga toxin-producing Escherichia coli (STEC) outbreak due to the O104 serotype in Germany in 2011. These emerging pathogens are literally a plane ride away, no matter where they are found globally, and can be disseminated worldwide in a matter of days to weeks.

      MDR-GNB, environmental mycobacteria, and molds are emerging as important pathogens in the ever-expanding population of immunocompromised hosts. These organisms, although of comparatively low virulence when compared to highly adapted human pathogens such as Streptococcus pneumoniae or group A streptococci, have distinct characteristics that make them very worrisome. First, they have evolved over millions of years, adapting to harsh environments which contain antimicrobial molecules. As a result, organisms such as Acinetobacter baumannii, Mycobacterium abscessus group, and Fusarium spp. have high levels of intrinsic drug resistance. Additionally, they have comparatively large amounts of DNA, giving them a broad genetic repertoire which allows them to survive in hostile environments such as hospital surfaces and equipment. Finally, many MDR-GNBs are genetically promiscuous, taking up DNA which may contain resistance genes from other species or genera of bacteria. This promiscuity has led to a new concept in antimicrobial resistance, the “antimicrobial resistome,” which describes all the antimicrobial-resistant genes in a particular environment.

      One of the most significant advances in the study of infectious disease in the past decade has been the Human Microbiome Project. Microbiome studies have shown that many of the microorganisms that are present in our bodies are not cultivable. This observation challenges our basic assumptions of defining a human pathogen based on its ability to grow in vitro or in animal models. The Human Microbiome Project is increasing our understanding of the role of microbial communities in chronic infection, such as those seen in chronic lung disease in cystic fibrosis patients and in chronic wounds of the extremities in diabetics. It is also likely that probing the microbiome will give us greater understanding of such disparate conditions as obesity, inflammatory bowel disease, and perhaps a variety of rheumatologic disorders.

      The past decade offered

Скачать книгу