Bioinformatics. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Bioinformatics - Группа авторов страница 33

Bioinformatics - Группа авторов

Скачать книгу

data” approaches underscores the idea that both laboratory and computationally based strategies will be necessary in carrying out cutting-edge research. In the same way that investigators are trained in, for example, basic biochemistry and molecular biology methodologies, a basic understanding of bioinformatic techniques as part of the biologist's arsenal will be indispensable in the future. As is undoubtedly apparent at this point, there is no substitute for placing one's hands on the computer keyboard to learn how to search and use genomic sequence data effectively. Readers are strongly encouraged to take advantage of the resources presented here, to grow in confidence and capability by working with the available tools, and to begin to apply bioinformatic methods and strategies toward advancing their own research interests.

      Internet Resources

Alliance of Genome Resources www.alliancegenome.org
Basic Local Alignment Search Tool (BLAST) ncbi.nlm.nih.gov/BLAST
ClinicalTrials.gov clinicaltrials.gov
DNA Data Bank of Japan (DDBJ) www.ddbj.nig.ac.jp
European Molecular Biology Laboratory–European Bioinformatics Institute (EMBL-EBI) www.ebi.ac.uk
GenBank www.ncbi.nlm.nih.gov/genbank
iCn3D www.ncbi.nlm.nih.gov/Structure/icn3d/docs/icn3d_about.html
Mouse Genome Database (MGD) informatics.jax.org
Online Mendelian Inheritance in Man (OMIM) omim.org
Protein Data Bank (PDB) www.rcsb.org/pdb
RefSeq ncbi.nlm.nih.gov/refseq
Single Nucleotide Polymorphism Database (dbSNP) www.ncbi.nlm.nih.gov/SNP
Vector Alignment Search Tool (VAST) www.ncbi.nlm.nih.gov/Structure/VAST
Zebrafish Information Network (ZFIN) zfin.org

      1 Baxevanis, A.D. (2012). Searching Online Mendelian Inheritance in Man (OMIM) for information on genetic loci involved in human disease. Curr. Protoc. Hum. Genet. Chapter 9, Unit 9.13.1–10. A protocol-driven description of the basic methodology for formulating OMIM searches and a discussion of the types of information available through OMIM, including descriptions of clinical manifestations resulting from genetic abnormalities.

      2 Galperin, M.Y., Fernández-Suárez, X.M., and Rigden, D.J. (2017). The 24th annual Nucleic Acids Research database issue: a look back and upcoming changes. Nucleic Acids Res. 45: D1–D11. A curated, annual review of specialized databases of interest and importance to the biomedical research community.

      1 Altschul, S., Gish, W., Miller, W. et al. (1990). Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

      2 Amberger, J.S., Bocchini, C.A., Schiettecatte, F. et al. (2014). OMIM.org: Online Mendelian Inheritance in Man, an online catalog of human genes and genetic disorders. Nucleic Acids Res. 43: D789–D798.

      3 Benson, D.A., Cavanaugh, M., Clark, K. et al. (2017). GenBank. Nucleic Acids Res. 45: D37–D42.

      4 Bult, C.J., Eppig, J.T., Blake, J.A. et al. (2016). Mouse genome database 2016. Nucleic Acids Res. 44: D840–D847.

      5 Collins, F.S., Patrinos, A., Jordan, E. et al., and Members of the DOE and NIH Planning Groups (1998). New goals for the U.S. Human Genome Project: 1998–2003. Science. 282: 682–689.

      6 Collins, F.S., Green, E.D., Guttmacher, A.E., and Guyer, M.S., on behalf of the U.S. National Human Genome Research Institute (2003). A vision for the future of genomics research. Nature. 422: 835–847.

      7 Finci, L.I., Krüger, N., Sun, X. et al. (2014). The crystal structure of netrin-1 in complex with DCC reveals the bifunctionality of netrin-1 as a guidance cue. Neuron. 83: 839–849.

      8 Galperin, M.Y., Fernández-Suárez, X.M., and Rigden, D.J. (2017). The 24th annual Nucleic Acids Research database issue: a look back and upcoming changes. Nucleic Acids Res. 45: D1–D11.

      9 Gao, J., Zhang, C., Yang, B. et al. (2012). Dcc regulates asymmetric outgrowth of forebrain neurons in zebrafish. PLoS One. 7: e36516.

      10 Gibrat, J.-F., Madej, T., and Bryant, S. (1996). Surprising similarities in structure comparison. Curr. Opin. Struct. Biol. 6: 377–385.

      11 Green, E.D. and Guyer, M.S., and The National Human Genome Research Institute (2011). Charting a course for genomic medicine from basepairs to bedside. Nature. 470: 204–213.

      12 Howe, D.G., Bradford, Y.M., Conlin, T. et al. (2012). ZFIN, the Zebrafish Model Organism Database: increased support for mutants and transgenics. Nucleic Acids Res. 41: D854–D860.

      13 International Human Genome Sequencing Consortium (2001). Initial sequencing and analysis of the human genome. Nature. 409: 860–921.

      14 Madej, T., Lanczycki, C.J., Zhang, D. et al. (2014). MMDB and VAST+: tracking structural similarities between macromolecular complexes. Nucleic Acids Res. 42: D297–D303.

      15 McKusick, V.A. (1966). Mendelian Inheritance in Man: Catalogs of Autosomal Dominant, Autosomal Recessive, and X-Linked Phenotypes. Baltimore, MD: The Johns Hopkins University Press.

      16 McKusick, V.A. (1998). Online Mendelian Inheritance in Man: Catalogs of Human Genes and Genetic Disorders, 12e. Baltimore, MD: The Johns Hopkins University Press.

      17 Schmutz,

Скачать книгу