Bioinformatics. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Bioinformatics - Группа авторов страница 45

Bioinformatics - Группа авторов

Скачать книгу

subtypes, with a discussion of their evolutionary origin and strategies for their detection.

      5 Pearson, W.R. (2016). Finding protein and nucleotide similarities with FASTA. Curr. Protoc. Bioinf. 53: 3.9.1–3.9.23. An in-depth discussion of the FASTA algorithm, including worked examples and additional information regarding run options and use scenarios.

      6 Wheeler, D.G. (2003). Selecting the right protein scoring matrix. Curr. Protoc. Bioinf. 1: 3.5.1–3.5.6. A discussion of PAM, BLOSUM, and specialized scoring matrices, with guidance regarding the proper choice of matrices for particular types of protein-based analyses.

      1 Agarawal, P. and States, D.J. (1998). Comparative accuracy of methods for protein similarity search. Bioinformatics. 14: 40–47.

      2 Altschul, S.F. (1991). Amino acid substitution matrices from an information theoretic perspective. J. Mol. Biol. 219: 555–565.

      3 Altschul, S.F. and Koonin, E.V. (1998). Iterated profile searches with PSI-BLAST: a tool for discovery in protein databases. Trends Biochem. Sci. 23: 444–447.

      4 Altschul, S.F., Gish, W., Miller, W. et al. (1991). Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

      5 Altschul, S.F., Madden, T.L., Schäffer, A.A. et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402.

      6 Brenner, S.E., Chothia, C., and Hubbard, T.J.P. (1998). Assessing sequence comparison methods with reliable structurally identified evolutionary relationships. Proc. Natl. Acad. Sci. USA. 95: 6073–6078.

      7 Bücher, P., Karplus, K., Moeri, N., and Hofmann, K. (1996). A flexible motif search technique based on generalized profiles. Comput. Chem. 20: 3–23.

      8 Chen, Z. (2003). Assessing sequence comparison methods with the average precision criterion. Bioinformatics. 19: 2456–2460.

      9 Dayhoff, M.O., Schwartz, R.M., and Orcutt, B.C. (1978). A model of evolutionary change in proteins. In: Atlas of Protein Sequence and Structure, vol. 5 (ed. M.O. Dayhoff), 345–352. Washington, DC: National Biomedical Research Foundation.

      10 Doolittle, R.F. (1981). Similar amino acid sequences: chance or common ancestry. Science 214: 149–159.

      11 Doolittle, R.F. (1989). Similar amino acid sequences revisited. Trends Biochem. Sci. 14: 244–245.

      12 Gonnet, G.H., Cohen, M.A., and Benner, S.A. (1992). Exhaustive matching of the entire protein sequence database. Proteins. 256: 1443–1445.

      13 Gribskov, M., McLachlan, A.D., and Eisenberg, D. (1987). Profile analysis: detection of distantly-related proteins. Proc. Natl. Acad. Sci. USA. 84: 4355–4358.

      14 Henikoff, S. and Henikoff, J.G. (1991). Automated assembly of protein blocks for database searching. Nucleic Acids Res. 19: 6565–6572.

      15 Henikoff, S. and Henikoff, J.G. (1992). Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA. 89: 10915–10919.

      16 Henikoff, S. and Henikoff, J.G. (1993). Performance evaluation of amino acid substitution matrices. Proteins Struct. Funct. Genet. 17: 49–61.

      17 Henikoff, S. and Henikoff, J.G. (2000). Amino acid substitution matrices. Adv. Protein Chem. 54: 73–97.

      18 Jones, D.T., Taylor, W.R., and Thornton, J.M. (1992). The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 8: 275–282.

      19 Karlin, S. and Altschul, S.F. (1990). Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc. Natl. Acad. Sci. USA. 87: 2264–2268.

      20 Kent, W.J. (2002). BLAT: the BLAST-like alignment tool. Genome Res. 12: 656–664.

      21 Lipman, D.J. and Pearson, W.R. (1985). Rapid and sensitive protein similarity searches. Science. 227: 1435–1441.

      22 Ma, B., Tromp, J., and Li, M. (2002). PatternHunter: faster and more sensitive homology search. Bioinformatics. 18: 440–445.

      23 Pearson, W.R. (1995). Comparison of methods for searching protein sequence databases. Protein Sci. 4: 1145–1160.

      24 Pearson, W.R. (2000). Flexible sequence similarity searching with the FASTA3 program package. Methods Mol. Biol. 132: 185–219.

      25 Pearson, W.R. (2016). Finding protein and nucleotide similarities with FASTA. Curr. Protoc. Bioinf. 53: 3.9.1–3.9.23.

      26 Pearson, W.R. and Lipman, D.J. (1988). Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA. 85: 2444–2448.

      27 Rost, B. (1999). Twilight zone of protein sequence alignments. Protein Eng. 12: 85–94.

      28 Ryan, J.F., Pang, K., Schnitzler, C.E. et al., and NISC Comparative Sequencing Program. (2013). The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science. 342: 1242592.

      29 Schneider, T.D., Stormo, G.D., Gold, L., and Ehrenfeucht, A. (1986). Information content of binding sites on nucleotide sequences. J. Mol. Biol. 188: 415–431.

      30 Schnitzler, C.E., Simmons, D.K., Pang, K. et al. (2014). Expression of multiple Sox genes through embryonic development in the ctenophore Mnemiopsis leidyi is spatially restricted to zones of cell proliferation. EvoDevo. 5: 15.

      31 Smith, T.F. and Waterman, M.S. (1981). Identification of common molecular subsequences. J. Mol. Biol. 147: 195–197.

      32 Staden, R. (1988). Methods to define and locate patterns of motifs in sequences. Comput. Appl. Biosci. 4: 53–60.

      33 Tatusov, R.L., Altschul, S.F., and Koonin, E.V. (1994). Detection of conserved segments in proteins: iterative scanning of sequence databases with alignment blocks. Proc. Natl. Acad. Sci. USA. 91: 12091–12095.

      34 Tatusova, T.A. and Madden, T.L. (1999). BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol. Lett. 174: 247–250.

      35 Török, A., Schiffer, P.H., Schintzler, C.E. et al. (2016). The cnidarian Hydractinia echinata employs canonical and highly adapted histones to pack its DNA. Epigenet. Chromatin. 9: 36.

      36 Vogt, G., Etzold, T., and Argos, P. (1995). An assessment of amino acid exchange matrices in aligning protein sequences: the twilight zone revisited. J. Mol. Biol. 249: 816–831.

      37 Wheeler, D.G. (2003). Selecting the right protein scoring matrix. Curr. Protoc. Bioinf. 1: 3.5.1–3.5.6.

      38 Wootton, J.C. and Federhen, S. (1993). Statistics of local complexity in amino acid sequences and sequence databases. Comput. Chem. 17: 149–163.

      39 Zhang, Z., Schwartz, S., Wagner, L., and Miller, W. (2000). A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7: 203–214.

      This chapter was written by Dr. Andreas D. Baxevanis in his private capacity. No official support or endorsement by the National Institutes of Health or the United States Department of Health and Human Services is intended or should be inferred.

      

Скачать книгу