Fog Computing. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Fog Computing - Группа авторов страница 31

Fog Computing - Группа авторов

Скачать книгу

their common vision, some paradigms were influenced by their considered use case, e.g. MEC paradigm enables constrained devices like smartphones to offload parts of the applications to save resources. However, two of the most popular paradigms (i.e. fog and edge computing) are widely used in research today.

      These two paradigms were designed to enable processing IoT applications at the endpoints of the network, sharing more similarities than others. Other than the naming convention, the difference at the beginning for the two, i.e. fog computing extends the cloud creating a cloud-to-things continuum and edge computing places the application directly on the edge devices, was represented by the location where computations are performed. Since in the past couple of years there were tremendous advances for edge devices, this difference between the two has disappeared, both fog and edge aiming to deploy applications as close as possible to the edge of the network. Considering the similarities they share, we argue that there is no difference between their purpose of them.

      The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 764785, FORA (Fog Computing for Robotics and Industrial Automation). This publication was partially supported by the TUW Research Cluster Smart CT.

      1 1 Chiang, M. and Zhang, T. (2016). Fog and IoT: an overview of research opportunities. IEEE Internet of Things Journal 3 (6): 854–864.

      2 2 Bonomi, F., Milito, R., Zhu, J., and Addepali, S. (2012). Fog computing and its role in the Internet of Things, 1st ACM Mobile Cloud Computing Workshop, 13–15.

      3 3 Shi, W., Cao, J., Zhang, Q. et al. (2016). Edge computing: vision and challenges. IEEE Internet of Things Journal 3 (5): 637–646.

      4 4 Satyanarayanan, M., Bahl, P., Caceres, R., and Davies, N. (2009). The case for VM-based cloudlets in mobile computing. IEEE Pervasive Computing 8 (4): 14–23. [Online]. Available: http://dx.doi.org/10.1109/MPRV.2009.82 http://http://ieeexplore.ieee.org/document/5280678.

      5 5 Rausch, T., Avasalcai, C., and Dustdar, S. (2018). Portable energy-aware cluster-based edge computers. In: 2018 IEEE/ACM Symposium on Edge Computing (SEC), 260–272.

      6 6 Elias, A.R., Golubovic, N., Krintz, C., and Wolski, R. (2017). Where's the bear? Automating wildlife image processing using IoT and edge cloud systems. In: 2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation (IoTDI), 247–258.

      7 7 M. T. Beck, M. Werner, S. Feld, and S. Schimper, Mobile edge computing: a taxonomy. Citeseer.

      8 8 Fernando, N., Loke, S.W., and Rahayu, W. (2013). Mobile cloud computing: a survey. Future Generation Computer Systems 29 (1): 84–106, including Special section: AIRCC-NetCoM 2009 and Special section: Clouds and Service-Oriented Architectures. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0167739X12001318.

      9 9 Yi, S., Li, C., and Li, Q. (2015). A survey of fog computing: concepts, applications and issues. In: Proceedings of the 2015 Workshop on Mobile Big Data, 37–42. ACM.

      10 10 Bonomi, F., Milito, R., Natarajan, P., and Zhu, J. (2014). Fog Computing: A Platform for Internet of Things and Analytics, 169–186. Cham: Springer International Publishing [Online]. Available: https://doi.org/10.1007/978-3-319-05029-4 7.

      11 11 Shi, W. and Dustdar, S. (2016). The promise of edge computing. Computer 49 (5): 78–81.

      12 12 Gusev, M. and Dustdar, S. (2018). Going back to the roots|the evolution of edge computing, an IoT perspective. IEEE Internet Computing 22 (2): 5–15.

      13 13 Pate, J. and Adegbija, T. (2018). Amelia: an application of the Internet of Things for aviation safety, in 15th. In: IEEE Annual on Consumer Communications & Networking Conference (CCNC), 2018, 1–6. IEEE.

      14 14 Chen, B., Wan, J., Celesti, A. et al. (2018). Edge computing in IoT-based manufacturing. IEEE Communications Magazine 56 (9): 103–109.

      15 15 Zhang, S., Li, W., Wu, Y. et al. Enabling edge intelligence for activity recognition in smart homes. In: 2018 IEEE 15th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), vol. 2018, 228–236. IEEE.

      16 16 Yu, W., Liang, F., He, X. et al. (2018). A survey on the edge computing for the Internet of Things. IEEE Access 6: 6900–6919.

      17 17 Chen, Z., Xu, G., Mahalingam, V. et al. (2016). A cloud computing based network monitoring and threat detection system for critical infrastructures. Big Data Research 3: 10–23.

      18 18 Xu, X., Sheng, Q.Z., Zhang, L.-J. et al. (2015). From big data to big service. Computer 48 (7): 80–83.

      19 19 Yi, S., Hao, Z., Qin, Z., and Li, Q. (2015). Fog computing: platform and applications. In: 2015 Third IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb) (HOTWEB), vol. 00, 73–78. [Online]. Available: http://doi.ieeecomputersociety.org/10.1109/HotWeb.2015.22.

      20 20 Stojmenovic, I. and Wen, S. (2014). The fog computing paradigm: scenarios and security issues. In: 2014 Federated Conference on Computer Science and Information Systems, 1–8.

      21 21 Osanaiye, O., Chen, S., Yan, Z. et al. (2017). From cloud to fog computing: a review and a conceptual live VM migration framework. IEEE Access 5: 8284–8300.

      22 22 Dastjerdi, A.V. and Buyya, R. (2016). Fog computing: helping the Internet of Things realize its potential. Computer 49 (8): 112–116.

      23 23 Sarkar, S., Chatterjee, S., and Misra, S. (2018). Assessment of the suitability of fog computing in the context of Internet of Things. IEEE Transactions on Cloud Computing 6 (1): 46–59.

      24 24 Shi, Y., Ding, G., Wang, H. et al. (2015). The fog computing service for healthcare. In: 2015 2nd International Symposium on Future Information and Communication Technologies for Ubiquitous HealthCare (Ubi-HealthTech), 1–5.

      25 25 Xia, C., Li, W., Chang, X. et al. (2018). Edge-based energy management for smart homes. In: 2018 IEEE 16th International Conference on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th International Conference on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), 849–856. IEEE.

      26 26 Bajrami, X. and Murturi, I. (2018). An efficient approach to monitoring environmental conditions using a wireless sensor network and nodemcu. e & i Elektrotechnik und Informationstechnik 135 (3): 294–301. [Online]. Available: https://doi.org/10.1007/s00502-018-0612-9.

      27 27 Tang, B., Chen, Z., Hefferman, G. et al. (2017). Incorporating intelligence in fog computing for big data analysis in smart cities. IEEE Transactions on Industrial Informatics 13 (5): 2140–2150.

      28 28 Tocze, K. and Nadjm-Tehrani, S. (2018). A taxonomy for management and optimization of multiple resources in edge computing. Wireless Communications and Mobile Computing 2018, Art. No: 7476203: 1–23.

      29 29 Farooq,

Скачать книгу