Mathematics for Enzyme Reaction Kinetics and Reactor Performance. F. Xavier Malcata

Чтение книги онлайн.

Читать онлайн книгу Mathematics for Enzyme Reaction Kinetics and Reactor Performance - F. Xavier Malcata страница 18

Автор:
Жанр:
Серия:
Издательство:
Mathematics for Enzyme Reaction Kinetics and Reactor Performance - F. Xavier Malcata

Скачать книгу

Xavier Malcata Professor of Chemical Engineering University of Porto (Portugal)

      Preface

       Quality is not an act, it is a habit.

      Aristotle

      Mathematics for Enzyme Reaction Kinetics and Reactor Performance is the first set in a unique 11‐volume collection on Enzyme Reactor Engineering. This two‐volume set relates specifically to the mathematical background – required for systematic and rational simulation of both reaction kinetics and reactor performance, and to fully understand and capitalize on the modelling concepts developed; it accordingly reviews basic and useful concepts of Algebra (first volume), and Calculus and Statistics (second volume).

      A brief overview of such native algebraic entities as scalars, vectors, matrices, and determinants constitutes the starting point of the first volume; the major features of germane functions are then addressed – namely, polynomials and series (and their operative algebra), as well as trigonometric and hyperbolic functions. Vector operations ensue, with results either of scalar or vector nature, complemented by tensor/matrix operations and their properties. The calculation of determinants is considered next – with an emphasis on their underlying characteristics, and use to find eigenvalues and -vectors. Finally, exact methods for solution of selected algebraic equations, including sets of linear equations, are addressed – as well as numerical methods for utilization at large.

      The second volume ends with a brief coverage of statistics – starting with continuous probability functions and statistical descriptors, and proceeding to discussion in depth of the normal distribution; such other continuous distributions as lognormal, chi‐square, Student's t‐, and Fisher's F‐distributions are reviewed next – spanning from mathematical derivation, through calculation of major descriptors, to discussion of most relevant features (including generation of distinct continuous probability functions). Statistical hypothesis testing is addressed next, complemented with the alternative approach of parameter and prediction inference – resorting to linear regression analysis as germane mode of parameter estimation.

       F. Xavier Malcata Professor of Chemical Engineering University of Porto (Portugal)

Volume 1

      Reading maketh a full man, conference; a ready man, and writing; an exact man.

       Francis Bacon

      Quantification of any entity or concept requires association to a numerical scale, so as to permit subsequent abstract reasoning and objective comparability; hence, every measurement carried out in the physicochemical world leads to a number, or scalar. Such numbers may be integer, rational (if expressible in the form p/q, where p and q denote integer numbers), or irrational (if not expressible in the previous form, and normally appearing as an infinite, nonrecurring decimal). If considered together, rational and irrational numbers account for the whole of real numbers – each one represented by a point in a straight line domain.

      Departing from real numbers, related (yet more general) concepts have been invented; this includes notably the complex numbers, z – defined as an ordered pair of two real numbers, say, za + ιb, where a and b denote real numbers and ι denotes

, the imaginary unit. Therefore, z is represented by a point in a plane domain. In the complex number system, a general nth degree polynomial equation holds exactly (and always) n roots, not necessarily distinct though – as originally realized by Italian mathematicians Niccolò F. Tartaglia and Gerolamo Cardano in the sixteenth century; many concepts relevant for engineering purposes, originally conceived to utilize real numbers (as the only ones adhering to physical evidence), may be easily generalized via complex numbers.

, as per Pythagoras’ theorem), coupled with orientations (as per tan{b/a} and tan{c/
}) fully define the said triplet. An alternative representation is as [a b c] or
– also termed row vector or column vector, respectively; when three column vectors are assembled together, say,
,
, and
, a matrix results, viz.
, termed tensor – which may also be obtained by joining three row vectors, say, [a1 a2 a3], [b1 b2 b3], and [c1

Скачать книгу