Practical Field Ecology. C. Philip Wheater

Чтение книги онлайн.

Читать онлайн книгу Practical Field Ecology - C. Philip Wheater страница 23

Practical Field Ecology - C. Philip Wheater

Скачать книгу

is expected to be great, even larger sample sizes may be required. Otherwise it is best to aim for as large a sample as possible after taking into account constraints including the size of the workforce, the time available, and how much material is present in the system under investigation. Sometimes, previous studies on similar topics can be used as a guide to what a reasonable sample size might be (i.e. from the literature or from a pilot study). Where several levels of a number of variables are to be analysed (e.g. male and female animals of each of three different age groups: young, mature, and old), then it is important to take sufficient replicates of each subgroup (e.g. young males, mature males, etc.) to be able to account for within‐group variability. This will inevitably have an impact on the required sample size and is another reason why the intended statistical analyses should be considered at an early stage of project planning. Box 1.7 shows the factors that should be considered when determining the sample size.

      Box 1.7 Aspects to be considered when determining the sample size

      A larger sample size is needed when there is:

       high variability – use a pilot study or consult similar investigations in the literature to get a feel for the likely variability;

       a small difference or relationship or association to be detected – it is worth recognising that very small differences may not be important ecologically (e.g. a native plant may have more insect species than an introduced one, but if this difference is by only one or two common insects, it is unlikely to be of conservation importance);

       a requirement to subdivide the data for analysis (e.g. separate analysis of males and females would require similar appropriate sample sizes of both males and females).

      Box 1.8 Species accumulation curves for two sites

      By plotting the cumulative number of species found against the number of quadrats examined, it can be seen that as the number of quadrats used increases, the number of species also increases. At the point at which the curve levels off towards the horizontal (the asymptote), we may assume that we have obtained the maximum number of species and can stop sampling. For site A (dashed line, diamonds), we may not yet have reached the total number of species, even after 30 quadrats, and should consider increasing the sampling effort. For site B (dotted line, squares), it appears that we have reached about the maximum number of species that we can expect to get. In fact, we probably reached this number at round about 16 or so quadrats. This difference between sites A and B might reflect not only a difference in the number of species found there, but also a difference in heterogeneity of the site, with site A being less homogeneous than site B. Note that had we looked at the data for site A after 12 quadrats (solid line, diamonds), we might have assumed that we had reached the maximum number of species as the curve levels off. This highlights the importance of collecting past the initial point of curve levelling to check that it truly does reflect the asymptote.

By plotting the cumulative number of species found against the number of quadrats examined, it can be seen that as the number of quadrats used increases, the number of species also increases.

      If we survey a pond in order to look at the animals and their relationships with several physical, chemical, and/or biological factors, then no matter how many replicates we take, we are merely describing what happens in a single entity (i.e. this one pond). Such a study does not tell us anything about pond ecology in general, and the use of such replicates is termed pseudoreplication and should be avoided (Hurlbert 1984; van Belle 2002). In order to broaden our approach and gain more of an understanding of ponds in general, we would need to study a large number of separate ponds. Thus, studies of single sites or small parts of sites may not reveal information applicable to the wider ecological context.

      In some situations, the data collected are linked to each other by design. For example, we might be interested in comparisons of matched data (e.g. examining the animals found on cabbages before and after the application of fertiliser or pesticide, or the numbers of mayfly larvae found above and below storm drain outflows into a series of streams). These designs can be perfectly sound, but because the data are matched (by cabbage or by stream) we require a slightly different approach to the resulting analysis (see Chapter 5).

Скачать книгу