Fundamentals of Analytical Toxicology. Robin Whelpton

Чтение книги онлайн.

Читать онлайн книгу Fundamentals of Analytical Toxicology - Robin Whelpton страница 16

Fundamentals of Analytical Toxicology - Robin Whelpton

Скачать книгу

alt="equation"/>

      However, such conversions always carry a risk of error. Especial care is needed in choosing the correct Mr if the drug is supplied as a salt, hydrate, etc. This can cause great discrepancies especially if the contribution of the accompanying anion or cation is high. Most analytical measurements are reported in terms of the free acid or base, and not the salt.

      We thank Drs Andrew Taylor and Ian Watson for contributions incorporated from Edition 1 of this book, Dr Lewis Couchman, Dr Natalia Kroupina, Prof John Langley, Ms Karen Morgan, Dr Simon Nelms, Prof Fritz Pragst, Ms Annie Sanger, Mr Peter Streete, and Dr Nicholas Tiscione for their help, and Prof Olaf Drummer and Prof Ilkka Ojanperä for commenting on drafts of the manuscript. We also thank Ms J Cossham (Wiley) for her help and encouragement.

Section A The Basics

      1.1 Introduction

      Analytical toxicology is concerned with the detection, identification, and measurement of drugs and other foreign compounds (xenobiotics) and their metabolites, and in some cases endogenous compounds, in biological and related specimens. The analytical toxicologist can play a useful role in the diagnosis, management, and indeed the prevention of poisoning, but to do so a basic knowledge of clinical and forensic toxicology is essential. Moreover, the analyst must be able to communicate effectively with clinicians, pathologists, coroners, police, members of the legal profession, and a range of other people. In addition, a good understanding of analytical chemistry, clinical chemistry, pathology, clinical pharmacology, pharmacokinetics, and occupational and environmental health is essential.

      The use of physicochemical techniques in the detection, identification and measurement of drugs and other poisons in body fluids and tissues has its origins in the development of forensic toxicology. Important contributions came later from work to improve food safety and from occupational toxicology. Major advances in analytical methodology followed the introduction and application of refined physicochemical techniques such as spectrophotometry and chromatography in the late 1940s. In particular, ultraviolet (UV) and infra-red (IR) spectrophotometry, together with visible spectrophotometry (colorimetry), and paper and ion-exchange column chromatography were widely used. In the 1960s paper chromatography was largely superseded by thin-layer chromatography (TLC) as this latter technique offered advantages of speed of analysis and lower detection limits.

Principle Technique
Chemical Colour test
Electrochemical
Spectrometric High resolution mass spectrometry (HRMS)Mass spectrometry (MS)Nuclear magnetic resonance (NMR)Spectrophotofluorimetry (SPFM)Ultraviolet/visible absorption spectrophotometry (UV/Vis)
Kinetic Flow-injection analysis (FIA)
Chromatographic Gas chromatography (GC), includes gas–solid chromatography (GSC) and gas–liquid chromatography (GLC)(High performance) liquid chromatography [(HP)LC](High performance) thin-layer chromatography [(HP)TLC]Ion-exchange chromatography (I-EC)Supercritical fluid chromatography [SFC]
Electrophoretic Capillary (zone) electrophoresis [C(Z)E]Capillary electro-chromatography (CEC)Ion mobility spectrometry (IMS)Micellar electrokinetic (capillary) chromatography (MEKC)
Ligand immunoassay Cloned enzyme donor immunoassay (CEDIA)Enzyme-linked immunosorbent assay (ELISA)Enzyme-multiplied immunoassay technique (EMIT)Fluorescence polarization immunoassay (FPIA)Latex agglutination test (LAT)Microparticle enzyme immunoassay (MEIA)Radioimmunoassay (RIA)
Enzyme-based assay Alcohol dehydrogenase – ethanolAryl acylamide amidohydrolase – paracetamol

      Despite analytical advances, it remains impossible to look for all poisons in all samples at the sensitivity required to diagnose poisoning. It is vital therefore that the reason for any analysis is kept clearly in mind. Although the underlying principles remain the same in the different branches of analytical toxicology, the nature and the amount of specimen available can vary widely, as may the time scale over which the result is required and the purpose for which the result is to be used. All these factors may in turn influence the choice of method(s) for a particular analysis. Over the last 10 years the dramatic expansion in the range of compounds that may be misused to achieve intoxication has further complicated the role of the analytical toxicologist (Pasin et al., 2017), as has the use of such unusual substances as 210Po and the nerve agent ‘Novichok’ as murder weapons (Harrison et al., 2017; Vale et al., 2018).

      

       1.2.1 Analytical methods

Скачать книгу