Quantum Mechanics, Volume 3. Claude Cohen-Tannoudji
Чтение книги онлайн.
Читать онлайн книгу Quantum Mechanics, Volume 3 - Claude Cohen-Tannoudji страница 26
Figure 2: Two diagrams representing schematically the two terms appearing in equation (C-23); they differ by an exchange of the individual states of the exit particles. They correspond, in a manner of speaking, to a different “switching point” for the incoming and outgoing states. The solid lines represent the particles’ free propagation, and the dashed lines their binary interaction.
C-5-b. Particle interaction energy, the direct and exchange terms
Many physics problems involve computing the average particle interaction energy. For the sake of simplicity, we shall only study here spinless particles (or, equivalently, particles being in the same internal spin state so that the corresponding quantum number does not come into play) and assume their interactions to be binary. These interactions are then described by an operator
(C-25)
In this expression, the function W2(rq, rq′) yields the diagonal matrix elements of the operator
α. General expression:
Replacing in (C-16) operator
(C-27)
We can thus write the average value of the interaction energy in any normalized state |Φ〉 as:
where G2(r1, r2) is the spatial correlation function defined by:
Consequently, knowing the correlation function G2(r1, r2) associated with the quantum state |Φ〉 allows computing directly, by a double spatial integration, the average interaction energy in that state.
Actually, as we shall see in more detail in § B-3 of Chapter XVI, G2(r1, r2) is simply the double density, equal to the probability density of finding any particle in r1 and another one in r2. The physical interpretation of (C-28) is simple: the average interaction energy is equal to the sum over all the particles’ pairs of the interaction energy Wint(r1, r2) of a pair, multiplied by the probability of finding such a pair at points r1 and r2 (the factor 1/2 avoids the double counting of each pair).
β. Specific case: the Fock states
Let us assume the state |Φ〉 is a Fock state, with specified occupation numbers ni:
(C-30)
We can compute explicitly, as a function of the ni, the average values:
(C-31)
contained in (C-29). We first notice that to get a non-zero result, the two operators a† must create particles in the same states from which they were removed by the two annihilation operators a. Otherwise the action of the four operators on the ket |Φ〉 will yield a new Fock state orthogonal to the initial one, and hence a zero result. We must therefore impose either i = k and j = l, or the opposite i = l and j = k, or eventually the special case where all the subscripts are equal. The first case leads to what we call the “direct term”, and the second, the “exchange term”. We now compute their values.
(i) Direct term, i = k and j = l, shown on the left diagram of Figure 3. If i = j = k = l, the four operators acting on |Φ〉 reconstruct the same ket, multiplied by the factor ni (ni — 1); this yields a zero result for fermions. If i ≠ j, we can move the operator ak = ai just to the right of the first operator
(C-32)
Figure 3: Schematic representation of a direct term (left diagram where each particle remains in the same individual