Geochemistry. William M. White

Чтение книги онлайн.

Читать онлайн книгу Geochemistry - William M. White страница 26

Geochemistry - William M. White

Скачать книгу

      Covalent and ionic bonds account for the majority of bonds between atoms in molecules and crystals. There are two other interactions that play a lesser role in interactions between atoms and molecules: van der Waals interactions and hydrogen bonds. These are much weaker but nevertheless play an important role in chemical interactions, particularly where water and organic substances are involved.

      (1.3)equation

      where U is the interaction energy, μ is the dipole moment, T is temperature (absolute, or thermodynamic temperature, which we will introduce in the next chapter), k is a constant (Boltzmann's constant, which we shall also meet in the next chapter), and r is distance. We do not want to get lost in equations at this point; however, we can infer several important things about dipole–dipole interactions just from a quick glance at it. First, the interaction energy depends inversely on the sixth power of distance. Many important forces, such as electromagnetic and gravitational forces, depend on the inverse square of distance. Thus, we may infer that dipole−dipole forces become weaker with distance very rapidly. Indeed, they are likely to be negligible unless the molecules are very close. Second, the interaction energy depends on the fourth power of the dipole moment, so that small differences in dipole moment will result in large differences in interaction energy. For example, the dipole moment of water (1.84 Debyes) is less than twice that of HCl (1.03 Debyes), yet the dipole interaction energy between two water molecules (716 J/mol) is nearly 10 times as great as that between two HCl molecules (72.24 J/mol) at the same temperature and distance (298 K and 50 pm). Finally, we see that dipole interaction energy will decrease with temperature.

Schematic illustration of the Van der Waals interactions arise because of the polar nature of some molecules. This diagram shows (a) dipole-dipole interactions that occur when two dipolar molecules orient themselves so oppositely charged sides are closest, and (b) the induction effect, which arise when the electron orbits of one molecule are perturbed by the electromagnetic field of another molecule.

      Finally, van der Waals forces can also occur as a consequence of fluctuations of charge distribution on molecules that occur on time scales of 10–16 seconds. These are known as London dispersion forces. They arise when the instantaneous dipole of one molecule induces a dipole in a neighboring molecule. As was the case in induction, the molecules will orient themselves so that the net forces between them are attractive.

      The total energy of all three types of van der Waals interactions between water molecules is about 380 J/mol, assuming an intermolecular distance of 5 pm and a temperature of 298 K (25°C). Though some interaction energies can be much stronger (e.g., CCl4, 2.8 kJ/mol) or weaker (1 J/mol for He), an energy of a few hundred joules per mole is typical of many substances. By comparison, the hydrogen–oxygen bond energy for each H–O bond in the water molecule is 46.5 kJ/mol. Thus, van der Waals interactions are quite weak compared with typical intramolecular bond energies.

      Hydrogen bonds typically have energies in the range of 20–40 kJ/mol. These are much higher than expected for electrostatic interactions alone, and indeed approach values similar to intramolecular bond energies. Thus, there is the suspicion that some degree of covalency is also involved in the hydrogen bond. That is to say, the nonbinding electrons of oxygen are to some degree shared with the hydrogen in another molecule. Hydrogen bonds are perhaps most important in water, where they account for some of the extremely usual properties of this compound, such as its high heat of vaporization, but they can also be important in organic molecules and are present in HF and ammonia as well.

      1.5.5 Molecules, crystals, and minerals

       1.5.5.1 Molecules

Скачать книгу