Geochemistry. William M. White
Чтение книги онлайн.
Читать онлайн книгу Geochemistry - William M. White страница 67
and
and therefore:
(where h is the partial molar enthalpy). This, however, is not true of entropy. You can imagine why: if we mix two substances on an atomic level, the number of possible arrangements of our system increases even if they are ideal substances. The entropy of ideal mixing is (compare eqn. 2.110):
(3.28)
(3.29)
Because ΔGmixing = ΔHmixing – TΔSmixing and ΔHmixing = 0, it follows that:
(3.30)
We stated above that the total expression for an extensive property of a solution is the sum of the partial molar properties of the pure phases (times the mole fractions), plus the mixing term. The partial molar Gibbs free energy is the chemical potential, so the full expression for the Gibbs free energy of an ideal solution is:
(3.31)
Rearranging terms, we can reexpress eqn. 3.31 as:
(3.32)
The term in parentheses is simply the chemical potential of component i, μi, as expressed in eqn. 3.26. Substituting eqn. 3.26 into 3.32, we have
(3.33)
Note that for an ideal solution, μi is always less than or equal to μ°i because the term RTln Xi is always negative (because the log of a fraction is always negative).
Let's consider ideal mixing in the simplest case, namely binary mixing. For a two-component (binary) system, X1 = (1 – X2), so we can write eqn. 3.30 for the binary case as:
(3.34)
Since X2 is less than 1, ΔG is negative and becomes increasingly negative with temperature, as illustrated in Figure 3.6. The curve is symmetrical with respect to X, that is, the minimum occurs at X2 = 0.5.
Now let's see how we can recover information on μi from plots such as Figure 3.6, which we will call G-bar–X plots. Substituting X1 = (1 – X2) into eqn. 3.33, it becomes:
(3.35)
This is the equation of a straight line on such a plot with slope of (μ2 – μ1) and intercept μ1. This line is illustrated in Figure 3.7. The curved line is described by eqn. 3.31. The dashed line is given by eqn. 3.35. Both eqn. 3.31 and eqn. 3.35 give the same value of
Figure 3.6 Free energy of mixing as a function of temperature in the ideal case. After Nordstrom and Munoz (1986).
Finally, the solid line connecting the μ°'s is the Gibbs free energy of a mechanical mixture of components 1 and 2, which we may express as:
(3.36)
You should satisfy yourself that the ΔGmixing is the difference between this line and the free energy curve:
(3.37)
Figure 3.7 Molar free energy in an ideal mixture and a graphical illustration of eqn. 3.31. After Nordstrom and Munoz (1986).
3.6 REAL SOLUTIONS
We now turn our attention to real solutions, which are somewhat