Optical Engineering Science. Stephen Rolt

Чтение книги онлайн.

Читать онлайн книгу Optical Engineering Science - Stephen Rolt страница 40

Optical Engineering Science - Stephen Rolt

Скачать книгу

alt="equation"/>

      In concentrating on third order aberrations, we shall, in the remainder of this chapter, seek to determine the impact of refractive surfaces, mirrors, and lenses on all the Gauss-Seidel aberrations. This analysis will proceed, initially, on the assumption that the surface in question lies at the pupil position. Subsequently, the impact of changing the position of the stop will be analysed. Manipulation of the stop position is an important variable in the optimisation of an optical design. The concept of the aplanatic geometry will be introduced where specific, simple optical geometries may be devised that are wholly free from either spherical aberration (SA) or coma (CO). These aplanatic building blocks feature in many practical designs and are significant because, in many instruments, such as telescopes and microscopes, there is a tendency for spherical aberration and coma to dominate the other aberrations. The elimination of spherical aberration and coma is thus a priority. Furthermore, by the same token, astigmatism (AS) and field curvature (FC) are more difficult to control. In particular, the control of field curvature is fundamentally limited by Petzval curvature, as alluded to in the previous chapter.

Geometrical illustration of an object with a field angle, θ, located at a distance, u from a spherical refractive surface of radius R—calculation of OPD for refractive surface.

      The image in this case is the paraxial image and from the paraxial theory, the angle φ may be expressed in terms of θ as θ/n. To compute the optical path of a general ray as it passes from object to paraxial image, we need to define the ray co-ordinates at three points:

equation equation equation

      The z co-ordinate of the stop position is derived from the binomial expansion for the axial sag of a sphere including terms up to the fourth power. In making this approximation, it is assumed that h is significantly less than R. If we were to adopt the paraxial approximation we would only consider the first r2 term in the expansion. In the case of third order aberration, we need to consider the next term. It is then very straightforward to calculate the total optical path, Φ, for a general ray in passing from object to paraxial image:

equation

      Before deriving the third order aberration terms, we examine the paraxial contribution which contain terms in h up to order r2.

      As one would expect, in the paraxial approximation, the optical path length is identical for all rays. However, for third order aberration, terms of up to order h4 must be considered. Expanding Eq. (4.2) to consider all relevant terms, we get:

      (4.5b)equation

      4.2.1 Aplanatic Points

Скачать книгу