Optical Engineering Science. Stephen Rolt

Чтение книги онлайн.

Читать онлайн книгу Optical Engineering Science - Stephen Rolt страница 6

Optical Engineering Science - Stephen Rolt

Скачать книгу

12.10 Laser gain profile and longitudinal modes.Figure 12.11 Active mode locking.Figure 12.12 Q switched laser.Figure 12.13 Ring laser.Figure 12.14 Stable resonator geometry.Figure 12.15 Laser cavity stability.Figure 12.16 Gaussian beam and cavity geometry.Figure 12.17 Dye laser schematic.Figure 12.18 Parametric oscillator.Figure 12.19 Laser penetration depth vs. interaction time.Figure 12.20 Chart of laser materials processing applications.Figure 12.21 Laser tracking – 3D coordinate metrology.Figure 12.22 Quadrant detector.Figure 12.23 Underlying principle of holography.

      13 Chapter 13Figure 13.1 Fibre propagation.Figure 13.2 (a) Step index fibre, (b) Graded index fibre.Figure 13.3 Periodic propagation in a graded index fibre.Figure 13.4 Ray paths in a focusing GRIN lens.Figure 13.5 Impact of fibre bend radius.Figure 13.6 Geometry of fibre bending.Figure 13.7 Geometrical effect of fibre bending on numerical aperture (n0 = 1....Figure 13.8 Slab waveguide.Figure 13.9 Slab waveguide (weakly guided).Figure 13.10 Modal chromaticity for example waveguide.Figure 13.11 Strongly guided waveguide.Figure 13.12 Optical fibre model.Figure 13.13 Flux distribution in single mode fibre.Figure 13.14 Dependence of U and W parameters on normalised frequency paramete...Figure 13.15 Gaussian beam size, w0, vs, normalised frequency parameter, V.Figure 13.16 Silica fibre attenuation.Figure 13.17 Group velocity dispersion in silica.Figure 13.18 Coupling into a multimode fibre.Figure 13.19 Fibre coupling and offset beam.Figure 13.20 (a) Splitter, (b) Combiner, (c) Coupler.Figure 13.21 Polarisation maintaining fibre preform.Figure 13.22 Photonic crystal fibre cross section.Figure 13.23 Creation of fibre Bragg grating ...Figure 13.24 Optical fibre manufacture.

      14 Chapter 14Figure 14.1 Photomultiplier tube.Figure 14.2 Sensitivity of some photocathode materials.Figure 14.3 Photo-emission and thermionic emission.Figure 14.4 Operational principle of p-n photodiode.Figure 14.5 Layout of p-i-n detector.Figure 14.6 Sensitivity of photodiode materials.Figure 14.7 Effect of bias voltage on photodiode current.Figure 14.8 Operation of an avalanche photodiode.Figure 14.9 Operation of a CCD device.Figure 14.10 Active pixel or CMOS detector.Figure 14.11 Photoconductive detector.Figure 14.12 Simple bolometer.Figure 14.13 Sensitivity of InSb detector vs background temperature.Figure 14.14 Equivalent circuit for Johnson noise.Figure 14.15 Equivalent read circuit for array detector pixel.Figure 14.16 Frequency dependence of pink noise.Figure 14.17 Optical measurement with optical chopper and lock-in amplifier.Figure 14.18 Image centroiding.Figure 14.19 MTF of pixelated detector illustrating Nyquist sampling.

      15 Chapter 15Figure 15.1 Paraxial layout of eyepiece.Figure 15.2 Cardinal points of Ramsden and Huygens eyepieces.Figure 15.3 Layout of optimised Kellner design.Figure 15.4 Performance of modified Kellner eyepiece.Figure 15.5 Plössl eyepiece layout.Figure 15.6 Performance of Plössl eyepiece.Figure 15.7 Modified Nägler eyepiece.Figure 15.8 Performance of modified Nägler eyepiece.Figure 15.9 Simple ×10 microscope objective.Figure 15.10 Wavefront error performance of simple ×10...Figure 15.11 ×100 Microscope objective.Figure 15.12 (a) Newtonian layout. (b) Cassegrain layout. (c) Pupil obscuratio...Figure 15.13 Ritchey-Chrétien telescope.Figure 15.14 Three mirror anastigmat.Figure 15.15 Schmidt camera system (sag of adaptor plate greatly exaggerated)....Figure 15.16 Basic Gauss doublet.Figure 15.17 Performance of simple Gauss lens.Figure 15.18 Optimised modified Gauss lens.Figure 15.19 Modified double Gauss performance.Figure 15.20 MTF of compact double Gauss lens.Figure 15.21 General layout of a zoom lens.Figure 15.22 Paraxial analysis of zoom lens performance.Figure 15.23 Mechanically compensated zoom lens.Figure 15.24 Paraxial outline of optically compensated zoom lens.Figure 15.25 Paraxial behaviour of optically compensated zoom lens.

      16 Chapter 16Figure 16.1 Basic principle of interferometry.Figure 16.2 Fizeau interferometer.Figure 16.3 Twyman-Green interferometer.Figure 16.4 Mach-Zehnder interferometer.Figure 16.5 Lateral shear interferometer.Figure 16.6 Mirau objective.Figure 16.7 Modelled white light fringes.Figure 16.8 White light interferogram of diamond machined Al surface.Figure 16.9 ‘Vibration Free’ interferometer.Figure 16.10 Absolute form measurement of reference sphere.Figure 16.11 The three flat test.Figure 16.12 Interferometric testing of a paraboloidal mirror.Figure 16.13 Oblate spheroid test.Figure 16.14 Ross null test.Figure 16.15 Computer generated hologram Fizeau test.Figure 16.16 Shack-Hartmann wavefront sensor.Figure 16.17 Deployment of Shack-Hartmann sensor.Figure 16.18 Foucault knife edge test.Figure 16.19 Fringe projection.Figure 16.20 Shadow Moiré technique.Figure 16.21 Scanning pentaprism test.Figure 16.22 Confocal microscopy.

      17 Chapter 17Figure 17.1 General layout of a monochromator.Figure 17.2 General layout of a spectrometer.Figure 17.3 Czerny-Turner monochromator.Figure 17.4 Slit function for varying slit widths.Figure 17.5 Fastie-Ebert spectrometer.Figure 17.6 Offner spectrometer.Figure 17.7 Image of slit at detector.Figure 17.8 Layout of imaging spectrometer.Figure 17.9 Principle of image slicing.Figure 17.10 Operation of a push broom scanner.Figure 17.11 Cross dispersion in an Echelle grating spectrometer.Figure 17.12 Fourier transform spectrometer.Figure 17.13 Fourier transform spectrograph of two closely spaced lines.

      18 Chapter 18Figure 18.1 Concurrent engineering – ‘Closing the Loop’.Figure 18.2 Subsystem partitioning of requirements.Figure 18.3 Design process.Figure 18.4 Design tools.Figure 18.5 Doublet wavefront error vs field angle (before optimisation).Figure 18.6 Doublet ray trace plot.Figure 18.7 Doublet wavefront error vs field angle (after optimisation).Figure 18.8 Monte Carlo simulation of tolerancing for simple doublet.Figure 18.9 Tolerancing process.Figure 18.10 Revised Monte Carlo simulation of tolerancing for simple doublet....Figure 18.11 Mechanical tolerances in a simple spherical single lens.Figure 18.12 Model for microscope illumination system.Figure 18.13 Microscope illumination – irradiance uniformity.Figure 18.14 Relative irradiance across illuminated area.Figure 18.15 Baffling effect of lens tube.Figure 18.16 Lens hood and additional baffling.

      19 Chapter 19Figure 19.1 Uniform shear forces acting on an element.Figure 19.2 Flexure of optical bench under load.Figure 19.3 Flexure in a beam element.Figure 19.4 Force and bending moment in a cantilever.Figure 19.5 Forces acting on single beam element.Figure 19.6 Beam deflection due to self-weight.Figure 19.7 Generalised illustration of optical bench distortion.Figure 19.8 Self-deflection induced aberration in fused silica mirror.Figure 19.9 Impact of vacuum window deformation.Figure 19.10 Mirror supported by a ring mount.Figure 19.11 Impact of support ring position on mirror deflection.Figure 19.12 (a) Mirror vee block support (b) Mirror belt support.Figure 19.13 Lens mounting in a lens barrel.Figure 19.14 Composite optical bench.Figure 19.15 Compliance of radiused retainer.Figure 19.16 Simple rectangular mesh.Figure 19.17 Meshing structure for simple barrel-mounted lens.

      20 Chapter 20Figure 20.1 The generation of spherical surfaces by grinding.Figure 20.2 Typical grinding process for single piece.Figure 20.3 Blocking process.Figure 20.4 Subsurface damage following grinding.Figure 20.5 Polishing process (for spherical components).Figure 20.6 Continuous lap polishing of flats.Figure 20.7 Test plate interferogram.Figure 20.8 Simplified process flow for grinding and polishing.Figure 20.9 Relative cost vs form accuracy.Figure 20.10 Subaperture polishing process.Figure 20.11 Magneto-rheological polishing.Figure 20.12 Ion beam figuring.Figure 20.13 Five axis diamond machining tool.Figure 20.14 Single point diamond turning process.Figure 20.15 Surface texture generated during single point diamond machining....Figure 20.16 Raster flycutting.Figure 20.17 Replication of micro-optics. (a) Mould application (b) Pressing (...Figure 20.18 Lens edging in a bell chuck.Figure 20.19 Lens centring in a chuck.Figure 20.20 Bonding of doublets.Figure 20.21 PSD spectra for polished and diamond machined components.Figure 20.22 Designation for surface texture.Figure 20.23 Example drawing. *P4 designates a polished surface whose quality ...

      21 Chapter 21Figure 21.1 Schematic diagram of lens barrel mounting.Figure 21.2 Active lens centring.Figure 21.3 Kinematic constraints.Figure 21.4 Kinematic mount example.Figure 21.5 Gimbal mechanism.Figure 21.6 Mirror mount with flexures.Figure 21.7 Example of a hexapod mount.Figure 21.8 General layout of a linear stage.Figure 21.9 Types of linear slide.Figure 21.10 Inchworm piezoelectric drive.Figure 21.11 Isostatic mounting arrangement.Figure 21.12 Flexure linkages.Figure 21.13 Hindle mount.Figure 21.14 Transmission spectrum for acrylic adhesive (Norland NOA 61).Figure 21.15 Opto-electronic component bonding and alignment.Figure 21.16 Simple laboratory alignment process.Figure 21.17 Principle of autocollimator.Figure 21.18 Use of interferometer or autocollimator in co-alignment of plane ...Figure 21.19 Spot centroiding.Figure

Скачать книгу