Plant Nucleotide Metabolism. Hiroshi Ashihara

Чтение книги онлайн.

Читать онлайн книгу Plant Nucleotide Metabolism - Hiroshi Ashihara страница 12

Plant Nucleotide Metabolism - Hiroshi Ashihara

Скачать книгу

UdR dUrd Uracil U Ura Deoxycytidine-5′-monophosphate dCMP Deoxycytidine CdR dCyd Cytosine C Cyt Thymidine-5′-monophosphate dTMP Thymidine TdR dThd Thymine T Thy

      Two types of symbols are used for nucleoside and nucleobases. Style #1: recommended in Nucleotide Metabolism (Henderson and Paterson 1973). Style #2: recommended by the IUPAC-IUB Commission on Biochemical Nomenclature (1970). In this book, style #1 is adopted.

      Abbreviations for ribonucleosides and 2-deoxyribonucleosides are derived from those used for the bases plus those for the ribosyl or 2′-deoxyribosyl groups. Thus AR stands for adenosine and AdR is the abbreviation for deoxyadenosine. In the case of inosine, (hypoxanthine + ribose) HR may be possible, but IR is often used. The latter is used in this text.

      Studies on purines and pyrimidines began in 1776 when the Swedish pharmacist Carl Wilhelm Scheele isolated uric acid from bladder stones. In 1846, Unger isolated guanine from the guano of Peruvian sea birds. At the end of the nineteenth century, several purines (adenine, xanthine, and hypoxanthine) and pyrimidines (thymine, cytosine, and uracil) were discovered by the German biochemist, Albrecht Kossel who believed they constituted the main part of cell nuclei. In 1874 Friedrich Miescher isolated nuclear material rich in phosphorus which he called ‘nuclein’. In the same period, Emil Fischer (1884) elucidated the structures of caffeine and related compounds which he confirmed by chemical synthesis. Further information can be found in a historical survey by Burnstock and Verkhratsky (2012). The pyridine nucleotide, NAD was discovered by the British biochemists Arthur Harden and William John Young in the early twentieth century (Harden and Young 1906).

      1.3.1 Purines

      A purine is a heterocyclic compound that consists of a pyrimidine ring fused to an imidazole ring. The word, ‘purine’ (‘Purum’ + ‘Uricum’) was coined by Emil Fischer (1884).

      1.3.1.1 Purine Bases

      As shown in structure 1 the atoms of the purine ring are numbered in an anticlockwise manner. In plants, there are several naturally occurring purine bases. They include adenine (2) and guanine (3), which are constituents of nucleic acids, and hypoxanthine (4), xanthine (5), and uric acid (6), which are produced as catabolites of adenine and guanine. Purine alkaloids, such as theobromine (3,7-dimethylxanthine) (7), theophylline (1,3-dimethylxanthine) (8), caffeine (1,3,7-trimethylxanthine) (9), and theacrine (1,3,7,9-tetramethyluric acid) (10) are derived from purine nucleotides, as are the major cytokinin plant hormones isopentenyladenine (11), benzyladenine (12), and trans-zeatin (13) (Ashihara et al. 2013).

      image image

      1.3.1.2 Purine Nucleosides

      image image

      1.3.1.3 Purine Nucleotides

      image image

      1.3.2 Pyrimidines

      Pyrimidine (29) is an aromatic heterocyclic organic compound similar to pyridine. The systematic study of pyrimidines was carried out and named ‘pyrimidin’ by a German chemist, Adolf Pinner (1885).

image

      1.3.2.1 Pyrimidine Bases

Скачать книгу