Repairable Systems Reliability Analysis. Rajiv Nandan Rai

Чтение книги онлайн.

Читать онлайн книгу Repairable Systems Reliability Analysis - Rajiv Nandan Rai страница 11

Repairable Systems Reliability Analysis - Rajiv Nandan Rai

Скачать книгу

its production or the materials from which it is made, certain irreversible changes are bound to occur due to the actions of various interacting and superimposing processes, such as corrosion, deformations, distortions, overheating, fatigue, or similar. These interacting processes are the main reason behind the change in the output characteristics of the system. The deviation of these characteristics from the specifications constitutes a failure. The failure of a system, therefore, can be defined as an event whose occurrence results in either loss of ability to perform required function(s) or loss of ability to satisfy the specified requirements (i.e., performance and/or attributes). Regardless of the reason of occurrence of this change, a failure causes system to transit from a state of functioning to a state of failure or state of unacceptable performance. For many systems, a transition to the unsatisfactory or failure state means retirement. Engineering systems of this type are known as non-maintained or non-reparable system because it is impossible to restore their functionability within reasonable time, means, and resources. For example, a missile is a non-repairable system once launched. Other examples of non-repairable systems include electric bulbs, batteries, transistors, etc. However, there are a large number of systems whose functionability can be restored by effecting certain specified tasks known as maintenance tasks. These tasks can be as complex as necessitating a complete overhaul or as simple as just cleaning, replacement, or adjustment. One can cite several examples of repairable systems one’s own day-to-day interactions with such systems that include but not limited to automobiles, computers, aircrafts, industrial machineries, etc. For instance, a laptop, not connected to an electrical power supply, may fail to start if its battery is dead. In this case, replacing the battery—a non-maintained item—with a new one may solve the problem. A television set is another example of a repairable system, which upon failure can be restored to satisfactory condition by simply replacing either the failed resistor or transistor or even a circuit board if that is the cause, or by adjusting the sweep or synchronization settings.

      Traditional reliability life or accelerated test data analysis—nonpara-metric or parametric—is based on a truly random sample drawn from a single population and independent and identically distributed (i.i.d.) assumptions on the reliability data obtained from the testing/fielded units. This i.i.d. assumption may also be valid, intuitively, on the first failure of several identical units, coming from the same design and manufacturing process, fielded in a specified or assumed to be in an identical environment. Life data of such items usually consists of an item’s single failure (or very first failure for reparable items) times with some items may be still surviving-referred as censoring or suspension. The reliability literature is in plenty to cover such aspects in reliability data analysis where the failure times are modeled by appropriate life distributions [2].

      However, in repairable system, one generally has times of successive failures of a single system, often violating the i.i.d assumption. Hence, it is not surprising that statistical methods required for repairable system differ from those needed in reliability analysis of non-repairable items. In order to address the reliability characteristics of complex repairable systems, a process rather than a distribution is often used. For a repairable system, time to next failure depends on both the life distribution (the probability distribution of the time to first failure) and the impact of maintenance actions performed after the first occurrence of a failure. The most popular process model is the Power Law Process (PLP). This model is popular for several reasons. For instance, it has a very practical foundation in terms of minimal repair—a situation when the repair of a failed system is just enough to get the system operational again by repair or replacement of its constituent item(s). Second, if the time to first failure follows the Weibull distribution, then the Power Law model repair governs each succeeding failure and adequately models the minimal repair phenomenon. In other words, the Weibull distribution addresses the very first failure and the PLP addresses each succeeding failure for a repairable system. From this viewpoint, the PLP can be regarded as an extension of the Weibull distribution and a generalization of Poisson process. Besides, the PLP is generally computationally easy in providing useful and practical solutions, which have been usually comprehended and accepted by the management for many real-world applications.

      As discussed earlier, a repairable system is a system that is restored to its functionable state after the loss of functionability by the actions other than replacement of the entire system. The quantum of repair depends upon various factors like criticality of the component failed, operational status of the system, risk index, etc. Accordingly, the management takes a decision on how much repair a system has to undergo. The two extremes of the repair are perfect and minimal repairs. A system is said to be perfectly

Скачать книгу