Multi-parametric Optimization and Control. Efstratios N. Pistikopoulos

Чтение книги онлайн.

Читать онлайн книгу Multi-parametric Optimization and Control - Efstratios N. Pistikopoulos страница 23

Multi-parametric Optimization and Control - Efstratios N. Pistikopoulos

Скачать книгу

and Pistikopoulos, E.N. (1999) Algorithms for the solution of multiparametric mixed‐integer nonlinear optimization problems. Industrial and Engineering Chemistry Research, 38 (10), 3976–3987, doi: 10.1021/ie980792u.

      25 25 Dinkelbach, W. (1969) Sensitivitätsanalysen und parametrische Programmierung, Ökonometrie und Unternehmensforschung / Econometrics and Operations Research, vol. 12, Springer‐Verlag, Berlin, Heidelberg.

      26 26 Bemporad, A., Morari, M., Dua, V., and Pistikopoulos, E.N. (2000) The explicit solution of model predictive control via multiparametric quadratic programming. Proceedings of the American Control Conference, vol. 2, pp. 872–876, doi: 10.1109/ACC.2000.876624.

      27 27 Bemporad, A., Morari, M., Dua, V., and Pistikopoulos, E.N. (2002) The explicit linear quadratic regulator for constrained systems. Automatica, 38 (1), 3–20, doi: 10.1016/S0005‐1098(01)00174‐1. URL http://www.sciencedirect.com/science/article/pii/S0005109801001741.

      28 28 Bemporad, A., Borrelli, F., and Morari, M. (2002) Model predictive control based on linear programming ‐ the explicit solution. IEEE Transactions on Automatic Control, 47 (12), 1974–1985, doi: 10.1109/TAC.2002.805688.

      29 29 Bemporad, A., Borrelli, F., and Morari, M. (2000) The explicit solution of constrained LP‐based receding horizon control, in Proceedings of the 39th IEEE Conference on Decision and Control, 2000, vol. 1, pp. 632–637, doi: 10.1109/CDC.2000.912837.

      30 30 Borrelli, F., Bemporad, A., and Morari, M. (2003) Geometric algorithm for multiparametric linear programming. Journal of Optimization Theory and Applications, 118 (3), 515–540, doi: 10.1023/B:JOTA.0000004869.66331.5c. URL URL http://dx.doi.org/10.1023/B%3AJOTA.0000004869.66331.5c.

      31 31 Morari, M., Jones, C.N., Zeilinger, M.N., and Baric, M. (2008) Multiparametric linear programming for control, in CCC 2008. 27th Chinese Control Conference, 2008, pp. 2–4, doi: 10.1109/CHICC.2008.4604876.

      32 32 Jones, C.N., Barić, M., and Morari, M. (2007) Multiparametric linear programming with applications to control. European Journal of Control, 13 (2–3), 152–170, doi: 10.3166/ejc.13.152‐170. URL http://www.sciencedirect.com/science/article/pii/S0947358007708178.

      33 33 Wittmann‐Hohlbein, M. and Pistikopoulos, E.N. (2012) A two‐stage method for the approximate solution of general multiparametric mixed‐integer linear programming problems. Industrial and Engineering Chemistry Research, 51 (23), 8095–8107, doi: 10.1021/ie201408p.

      34 34 Wittmann‐Hohlbein, M. and Pistikopoulos, E.N. (2013) On the global solution of multi‐parametric mixed integer linear programming problems. Journal of Global Optimization, 57 (1), 51–73, doi: 10.1007/s10898‐012‐9895‐2. URL http://dx.doi.org/10.1007/s10898-012-9895-2.

      35 35 Khalilpour, R. and Karimi, I.A. (2014) Parametric optimization with uncertainty on the left hand side of linear programs. Computers and Chemical Engineering, 60, 31–40, doi: 10.1016/j.compchemeng.2013.08.005. URL http://www.sciencedirect.com/science/article/pii/S0098135413002421.

      1 1 If does not have full rank, it is always possible to find an equivalent matrix with a reduced number of rows, which has full rank.

      2 2 Note that this solution can also be directly obtained by solving the set of equations for , which corresponds to the propagation of the solution of the LP at along the parameter space.

      3 3 This does not consider problems arising from scaling and/or round‐off computational errors.

      4 4 Consider Figure 2.4: if the constraint, which only coincides at the single point with the feasible space is chosen as part of the active set, the corresponding parametric solution from Eq. (2.5) will only be valid in that point, based on Eq. (2.6).

      5 5 The geometrical algorithms presented up to that point were limited to at most two parameters [2,25].

      6 6 In his book, Gal also considered the case of left‐hand side uncertainty, however limited to a single parameter and a single row or column [22].

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/7RxsUGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAAccAgAAAgAA ADhCSU0EJQAAAAAAEOjxXPMvwRihontnrcVk1bo4QklNBDoAAAAAAOUAAAAQAAAAAQAAAAAAC3By aW50T3V0cHV0AAAABQAAAABQc3RTYm9vbAEAAAAASW50ZWVudW0AAAAASW50ZQAAAABJbWcgAAAA D3ByaW50U2l4dGVlbkJpdGJvb2wAAAAAC3ByaW50ZXJOYW1lVEVYVAAAAAEAAAAAAA9wcmludFBy b29mU2V0dXBPYmpjAAAADABQAHIAbwBvAGYAIABTAGUAdAB1AHAAAAAAAApwcm9vZlNldHVwAAAA AQAAAABCbHRuZW51bQAAAAxidWlsdGluUHJvb2YAAAAJcHJvb2ZDTVlLADhCSU0EOwAAAAACLQAA ABAAAAABAAAAAAAScHJpbnRPdXRwdXRPcHRpb25zAAAAFwAAAABDcHRuYm9vbAAAAAAAQ2xicmJv b2wAAAAAAFJnc01ib29sAAAAAABDcm5DYm9vbAAAAAAAQ250Q2Jvb2wAAAAAAExibHNib29sAAAA AABOZ3R2Ym9vbAAAAAAARW1sRGJvb2wAAAAAAEludHJib29sAAAAAABCY2tnT2JqYwAAAAEAAAAA AABSR0JDAAAAAwAAAABSZCAgZG91YkBv4AAAAAAAAAAAAEdybiBkb3ViQG/gAAAAAAAAAAAAQmwg IGRvdWJAb+AAAAAAAAAAAABCcmRUVW50RiNSbHQAAAAAAAAAAAAAAABCbGQgVW50RiNSbHQAAAAA AAAAAAAAAABSc2x0VW50RiNQeGxAcsAAAAAAAAAAAAp2ZWN0b3JEYXRhYm9vbAEAAAAAUGdQc2Vu dW0AAAAAUGdQcwAAAABQZ1BDAAAAAExlZnRVbnRGI1JsdAAAAAAAAAAAAAAAAFRvcCBVbnRGI1Js dAAAAAAAAAAAAAAAAFNjbCBVbnRGI1ByY0BZAAAAAAAAAAAAEGNyb3BXaGVuUHJpbnRpbmdib29s AAAAAA5jcm9wUmVjdEJvdHRvbWxvbmcAAAAAAAAADGNyb3BSZWN0TGVmdGxvbmcAAAAAAAAADWNy b3BSZWN0UmlnaHRsb25nAAAAAAAAAAtjcm9wUmVjdFRvcGxvbmcAAAAAADhCSU0D7QAAAAAAEAEs AAAAAQACASwAAAABAAI4QklNBCYAAAAAAA4AAAAAAAAAAAAAP4AAADhCSU0EDQAAAAAABAAAAB44 QklNBBkAAAAAAAQAAAAeOEJJTQPzAAAAAAAJAAAAAAAAAAABADhCSU0nEAAAAAAACgABAAAAAAAA AAI4QklNA/UAAAAAAEgAL2ZmAAEAbGZmAAYAAAAAAAEAL2ZmAAEAoZmaAAYAAAAAAAEAMgAAAAEA WgAAAAYAAAAAAAEANQAAAAEALQAAAAYAAAAAAAE4QklNA/gAAAAAAHAAAP//////////////

Скачать книгу