Ecology. Michael Begon

Чтение книги онлайн.

Читать онлайн книгу Ecology - Michael Begon страница 72

Ecology - Michael  Begon

Скачать книгу

metabolic rates (see, for example, Figure 3.31). Here, too, therefore, we return to Equation 3.2 and the value of b.

      a basis for metabolic scaling: SA and RTN theories

      What should the allometric exponent be? As explained before, most answers to this question have focused on constraints on rates of transport. There have been two main types of theory: surface area theories (SA) and resource‐transport network theories (RTN), both with histories stretching back to the 1800s (Glazier (2014); and see Glazier (2005) for a much fuller subdivision of theories). SA theories argue that the rate of any metabolic process is limited by the rate at which resources for that process can be transported in, or at which the heat or waste products generated by the process can be transported out. This transport occurs across a surface, either within the organism or between the organism and its environment, the extent of which increases with the square (power 2) of linear size – as too, therefore, does the metabolic rate. However, assuming no change in shape, mass itself increases with the cube (power 3) of linear size. Hence, the metabolic rate, rather than keeping up with this increase in mass (where b would be 1) lags behind, scaling with mass with an exponent (b) of images or 0.67.

      RTN theories, on the other hand, focus on the geometries of transport networks that would optimise the flow of nutrients being dispersed from a centralised hub to target tissues within an organism, or the flow of waste products carried away in an equivalent manner in the opposite direction. Derivations based on networks assumed to be of this type are more complex than the simple area‐to‐volume arguments applied above. However, we can ignore these details and note simply that initial attempts to derive a metabolic scaling rule based on such networks led to a b value of images or 0.75 (West et al., 1997), while subsequent elaborations confirmed this value if the velocity of flow itself scales with mass, but suggested a value closer to 0.67 if velocity does not vary significantly with mass (Banavar et al., 2010). A value of 0.75 is attractive in that it conforms with an empirical estimate derived long ago by Kleiber (1932) from an analysis of metabolic rates in a number of birds and mammals. This had given rise to the so‐called ‘Kleiber’s law’, but the law had lacked a convincing theoretical underpinning before West et al.’s study.

      a universal b?

      Attempts like these to derive an ‘expected’ value for b have often been motivated by a wish to discover fundamental organising principles governing the world around us –universal rules linking metabolism to size – a single, common value of b (Brown et al., 2004). Others have suggested that such generalisations may be oversimplified (Glazier, 2010, 2014). There need be no conflict between these two viewpoints. It can be valuable to have a single, simple theory that goes a long way towards explaining the patterns we see in nature. But it is also valuable to have a more complex, multifaceted theory that explains even more, including apparent exceptions to the simple rule. Similarly, when we examine data for these relationships, it can be valuable to focus on the general trend and fit a single line to the data, even if there is considerable variation around that general trend. But it is also valuable to treat that variation not as noise but as something requiring an explanation in its own right – for which a more complex model may be required.

Graph depicts the relationships between metabolic rate and body mass for heterotrophic prokaryotes, protists and metazoans, plotted on logarithmic scales. The black lines and closed points are for active metabolic rates and the grey lines and open points for resting rates. In each case, the fitted slopes are shown.

      Source: After DeLong et al. (2010).

      Source: After Mori et al. (2010).

      Note, to add a further perspective, that alongside SA and RTN theories, there is an equally long tradition of emphasising body composition as a driver of metabolic rate, with some organisms having a much higher proportion of structural, low‐metabolising tissue than others (see Glazier, 2014); and other studies again have emphasised the importance of changing shape (which the simpler theories assume remains constant) and show that the shifting patterns of metabolic rates with shape support the SA but not the RTN theories of metabolic scaling (Hirst et al., 2016). However, particular values of b, and the truth or otherwise of the hypotheses proposed to explain them, are less important than the more general point that an organism’s rate of metabolism reflects a whole host of constraints and demands, and different factors will therefore dominate in their effects in different organisms, and at different

Скачать книгу