Position, Navigation, and Timing Technologies in the 21st Century. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Position, Navigation, and Timing Technologies in the 21st Century - Группа авторов страница 48

Position, Navigation, and Timing Technologies in the 21st Century - Группа авторов

Скачать книгу

(e.g. urban places) and much lower in rural environments [104].

      37.5.4 Dead Reckoning

      Dead reckoning refers to the use of sensors that provide location updates, calculated based on the last determined position and incrementing that position based on known or estimated speeds over elapsed time. Position and speed estimation is typically based on IMUs, which include multi‐axis accelerometers, gyroscopes, and possibly magnetometers. A disadvantage of dead reckoning is that the inaccuracy of the estimation process is cumulative, so any deviations in the position estimates become larger with time. This is because new positions are calculated entirely from previous positions. Thus, these inertial navigation systems (INSs) are often used to estimate relative rather than absolute location, that is, the change in position since the last update, with some other localization technology (e.g. Wi‐Fi fingerprinting) for obtaining periodic position fixes (absolute location estimates).

Graphs depict the autocorrelation-based step cycle detection. The top graph shows the raw acceleration magnitude during five sample strides.

      Source: Reproduced with permission of IEEE.

      While accurate stride length improves displacement estimation, the accuracy increase is often marginal as drifts in heading (the direction of motion) typically dominate errors [126]. The heading direction of steps during motion can be obtained with a gyroscope or a compass (magnetometer). Gyroscopes output angular velocities in 3D, which are integrated over time to obtain direction change information. A turn can be detected when the relative orientation measured by a gyroscope changes abruptly. To distinguish between changes due to turns and changes caused by noise, only heading changes exceeding a predefined threshold are determined as turns [127]. A compass can measure the absolute orientation (heading) of the mobile device (e.g. smartphone) with respect to the magnetic north. However, Earth’s magnetic field is relatively weak at the surface, and buildings that are filled with metal and conducting wires can overpower the natural signal, leading to local “disturbances” (e.g. location‐specific magnetic offsets that can cause heading errors of up to 100o [128]). Some efforts attempt to filter the magnetic offset on consecutive compass readings, to improve accuracy [129]. An increasingly popular solution to overcome the offset is to combine gyroscope and magnetometer readings as the two sensors have complementary error characteristics: gyroscopes provide poor long‐term orientation, while magnetometers are subject to short‐term orientation errors [130]. In general, multiple types of inertial sensors perceive similar movements during walking, which can be used to overcome errors; for example, a compass value can be considered valid if the readings of the compass and gyroscope in the INS unit experience a correlated trend [111], which can help discard compass values containing a severe magnetic offset.

      Today’s smartphones include IMUs, and the fact that they are carried by people almost everywhere makes INS‐based indoor localization particularly attractive. However, one important challenge is to account for the manner in which the smartphone is carried: in front pockets, back pockets, side pockets, shirt pockets, backpacks, handbags, on belt clips, or in the hand. A few efforts on activity recognition have explored estimating phone placements [125], which may help improve the performance of dead‐reckoning‐based localization systems. However, studies have shown that even if a smartphone is located in a single location (e.g. trouser pocket), notable errors are accrued (about 14.4% [131]) when estimating distance traveled, compared to foot‐mounted ground truth sensors.

      37.5.5 Map Matching

      Accurate trajectory estimation is a major goal of most indoor localization and navigation systems. A pedestrian trajectory consists of a sequence of step vectors. Techniques that utilize an electronic map to determine the position of a mobile person or object along a trajectory in the context of locations provided on the map are referred to as map matching techniques. The idea of applying electronic maps to adjust a mobile subject’s positions has been used in outdoor localization schemes [132]. Similarly, integrating the geometric constraints of floor plans in indoor environments can help improve indoor localization accuracy (e.g. when used in tandem with dead reckoning or Wi‐Fi fingerprinting). In general, the overall geometric shape of a mobile subject’s trajectory should be similar to that of the floor plan, and any deviations can point toward an error in a localization scheme. Various geometric abstraction models have been proposed for map matching, for example, link‐node models [133] and stress‐free floor plans [108]. Particle filtering techniques can additionally be used to exclude unlikely positions for mobile subjects, such as obstacles and walls [134, 135].

      LiFS [110] is an example of a framework for matching sensor/signal readings to a physical floor plan. First, continuous measurement of acceleration readings and RSS readings is performed with the aid of smartphone users during their routine

Скачать книгу