Position, Navigation, and Timing Technologies in the 21st Century. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Position, Navigation, and Timing Technologies in the 21st Century - Группа авторов страница 84

Position, Navigation, and Timing Technologies in the 21st Century - Группа авторов

Скачать книгу

(M) SVs, (N) Towers: {M, N} {4, 0} {4, 1} {4, 2} {4, 3} {5, 0} {5, 1} {5, 2} {5, 3} VDOP 3.773 1.561 1.261 1.080 3.330 1.495 1.241 1.013 HDOP 2.246 1.823 1.120 1.073 1.702 1.381 1.135 1.007 GDOP 5.393 2.696 1.933 1.654 4.565 2.294 1.880 1.566 Schematic illustrations of (a) the sky plot of GPS SVs: 14, 18, 21, 22, and 27 used for the 5 SV scenarios. For the 4 SV scenario, SVs 14, 21, 22, and 27 were used. The elevation mask, elsv, min, was set to 20-degree (dashed red circle). (b) Top: Cellular CDMA tower locations and receiver location. Bottom: Uncertainty ellipsoid (yellow) of navigation solution from using pseudoranges from five GPS SVs and uncertainty ellipsoid of navigation solution from using pseudoranges from five GPS SVs and three cellular CDMA towers.

      Source: Reproduced with permission of Z. Kassas (International Technical Meeting Conference).

      Traditional integrated navigation systems, particularly onboard vehicles, integrate GNSS receivers with an INS. When these systems are integrated, the long‐term stability of a GNSS navigation solution complements the short‐term accuracy of an INS. GNSS–INS fusion architectures with loosely coupled, tightly coupled, and deeply coupled estimators are well studied [87]. Regardless of the coupling type, the errors of a GNSS‐aided INS will diverge in the absence of GNSS signals, and the rate of divergence depends on the quality of the IMU. Cellular signals could be used in place of GNSS signals to aid an INS [44]. This section outlines how cellular signals could be used to aid an INS in the absence of GNSS signals. Additional details can be found in [4, 45, 88, 89].

      This section is organized as follows. Section 38.9.1 discusses how to aid the INS with cellular signals in a radio SLAM fashion. Sections 38.9.2 and 38.9.3 present simulation and experimental results, respectively, of a UAV navigating in a radio SLAM fashion, while aiding its INS with ambient cellular signals.

      Source: Reproduced with permission of IEEE.

      38.9.1 Radio SLAM with Cellular Signals

      To correct INS errors using cellular pseudoranges, an EKF framework similar to a traditional tightly coupled GNSS‐aided INS integration strategy can be adopted, with the added complexity that the cellular towers’ states (position and clock error states) are simultaneously estimated alongside the navigating vehicle’s states (position, velocity, attitude, IMU measurement error states, and receiver clock error states). This framework is composed of two modes:

       Mapping ModeThe EKF produces estimates and associated estimation error covariances of both the navigating vehicle and the cellular towers’ states (augmented in ) using both GNSS SV and cellular pseudoranges. Between aiding corrections, the EKF produces the state prediction and prediction error covariance P− using the INS and receiver and cellular transmitter clocks models. When an aiding source is available, either GNSS SV or cellular pseudoranges, the EKF produces a state estimate update and associated estimation error covariance P+.

       Radio SLAM ModeThe cellular‐aided INS framework enters a radio SLAM mode when GNSS pseudoranges become unavailable. In this mode, INS errors are corrected using cellular pseudoranges and the cellular transmitters’ state estimates that were last computed in the mapping mode. As the vehicle navigates, it continues to refine the cellular transmitters’ state estimates simultaneously with estimating the vehicle’s own states.

      38.9.2 Simulation Results

Скачать книгу