Coastal Ecosystems in Transition. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Coastal Ecosystems in Transition - Группа авторов страница 18
REFERENCES
1 Alcamo, J., Flörke, M., & Märker, M. (2007). Future long‐term changes in global water resources driven by socio‐economic and climatic changes. Hydrological Sciences Journal, 52(2), 247–275. https://doi:10.1623/hysj.52.2.247
2 Alvisi, F., & Cozzi, S. (2016). Seasonal dynamics and long‐term trend of hypoxia in the coastal zone of Emilia Romagna (NW Adriatic Sea, Italy). Science of the Total Environment, 541, 1448–1462. https://doi:10.1016/j.scitotenv.2015.10.011
3 Ator, S.W., Brakebill, J.W., & Blomquist, J.D. (2011). Sources, fate, and transport of nitrogen and phosphorus in the Chesapeake Bay watershed: An empirical model (Scientific Investigations Report 2011‐5167, 27 pp.). Reston, VA: US Geological Survey.
4 Bachman, L.J., Lindsey, B., Brakebill, J., & Powars, D.S. (1998). Ground‐water discharge and base‐flow nitrate loads of nontidal streams, and their relation to a hydrogeomorphic classification of the Chesapeake Bay Watershed, middle Atlantic coast (Water‐Resources Investigations Report 98‐4059, 71 pp.). Baltimore, MD: US Geological Survey.
5 Basu, N.B., Destouni, G., Jawitz, J.W., Thompson, S.E., Loukinova, N.V., Darracq, A., et al. (2010). Nutrient loads exported from managed catchments reveal emergent biogeochemical stationarity. Geophysical Research Letters, 37(23), L23404. https://doi:10.1029/2010gl045168
6 Bloschl, G., Hall, J., Parajka, J., Perdigao, R.A.P., Merz, B., Arheimer, B., et al. (2017). Changing climate shifts timing of European floods. Science, 357(6351), 588–590. https://doi:10.1126/science.aan2506
7 Boesch, D.F., Brinsfield, R.B., & Magnien, R.E. (2001). Chesapeake Bay eutrophication: Scientific understanding, ecosystem restoration, and challenges for agriculture. Journal of Environmental Quality, 30(2), 303–320. https://www.ncbi.nlm.nih.gov/pubmed/11285890
8 Bortone, G. (2014). Il “Piano stralcio di lotta alla Eutrofizzazione” dell'Autorità del Po. sua adozione e applicazione. In A. Rinaldi (Ed.), Fioriture algali in Adriatico. Il bacino padano tra sviluppo e scienza (pp. 67–76). Imola: Editrice La Mandragora.
9 Boyer, E.W., & Howarth, R.W. (2008). Nitrogen fluxes from rivers to the coastal oceans. In D.G. Capone, D.A. Bronk, M.R. Mulholland, E.J. Carpenter (Eds.), Nitrogen in the marine environment (pp. 1565–1587). Amsterdam: Elsevier.
10 Boynton, W.R., Hagy, J.D., Cornwell, J.C., Kemp, W.M., Greene, S.M., Owens, M.S., et al. (2008). Nutrient budgets and management actions in the Patuxent River Estuary, Maryland. Estuaries and Coasts, 31(4), 623–651. https://doi:10.1007/s12237‐008‐9052‐9
11 Breitburg, D., Levin, L.A., Oschlies, A., Gregoire, M., Chavez, F.P., Conley, D.J., Garcon, V., et al. (2018). Declining oxygen in the global ocean and coastal waters. Science, 359(6371). https://doi:10.1126/science.aam7240
12 Carpenter, S.R., Caraco, N.F., Correll, D.L., Howarth, R.W., Sharpley, A.N., & Smith, V.H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8(3), 559–568. https://doi:10.1890/1051‐0761(1998)008[0559:Nposww]2.0.Co;2
13 Chanat, J.G., Moyer, D.L. Blomquist, J.D., Hyer, K.E., & Langland, M.J. (2016). Application of a weighted regression model for reporting nutrient and sediment concentrations, fluxes, and trends in concentration and flux for the Chesapeake Bay Nontidal Water‐Quality Monitoring Network, results through water year 2012 (Scientific Investigations Report 2015‐5133, 76 pp.). Reston, VA: US Geological Survey.
14 Charlton, M.B., Bowes, M.J., Hutchins, M.G., Orr, H.G., Soley, R., & Davison, P. (2018). Mapping eutrophication risk from climate change: Future phosphorus concentrations in English rivers. Science of the Total Environment, 613–614, 1510–1526. https://doi:10.1016/j.scitotenv.2017.07.218.
15 Chesapeake Bay Program (2014). Chesapeake Bay Watershed Agreement. https://www.chesapeakebay.net/what/what_guides_us/watershed_agreement
16 Chesapeake Executive Council (1988). Baywide nutrient reduction strategy: An agreement commitment report. Annapolis, MD.
17 Cirmo, C.P., & McDonnell, J.J. (1997). Linking the hydrologic and biogeochemical controls of nitrogen transport in near‐stream zones of temperate‐forested catchments: A review. Journal of Hydrology, 199(1–2), 88–120. https://doi:10.1016/s0022‐1694(96)03286‐6
18 Cloern, J.E. (2001). Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series, 210, 223–253. https://doi:10.3354/meps210223
19 Cozzi, S., Falconi, C., Comici, C., Čermelj, B., Kovac, N., Turk, V., & Giani, M. (2012). Recent evolution of river discharges in the Gulf of Trieste and their potential response to climate changes and anthropogenic pressure. Estuarine, Coastal and Shelf Science, 115, 14–24. https://doi:10.1016/j.ecss.2012.03.005
20 Cozzi, S., & Giani, M. (2011). River water and nutrient discharges in the Northern Adriatic Sea: Current importance and long term changes. Continental Shelf Research, 31(18), 1881–1893. https://doi:10.1016/j.csr.2011.08.010
21 Cozzi, S., Ibáñez, C., Lazar, L., Raimbault, P., & Giani, M. (2019). Flow regime and nutrient‐loading trends from the largest south European watersheds: Implications for the productivity of Mediterranean and Black Sea’s coastal areas. Water, 11(1), 1. https://doi:10.3390/w11010001
22 Cozzi, S., Mistaro, A., Sparnocchia, S., Colugnati, L., Bajt, O., & Toniatti, L. (2014). Anthropogenic loads and biogeochemical role of urea in the Gulf of Trieste. Science of the Total Environment, 493, 271–281. https://doi:10.1016/j.scitotenv.2014.05.148
23 Degobbis, D. (1989). Increased eutrophication of the northern Adriatic sea. Marine Pollution Bulletin, 20(9), 452–457. https://doi:10.1016/0025‐326x(89)90066‐0
24 Diaz, R.J., & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321(5891), 926–929. https://doi:10.1126/science.1156401
25 Djakovac, T., Degobbis, D., Supić, N., & R. Precali (2012). Marked reduction of eutrophication