Deepwater Flexible Risers and Pipelines. Yong Bai

Чтение книги онлайн.

Читать онлайн книгу Deepwater Flexible Risers and Pipelines - Yong Bai страница 6

Автор:
Жанр:
Серия:
Издательство:
Deepwater Flexible Risers and Pipelines - Yong  Bai

Скачать книгу

the bending moment of the umbilical cable under...Figure 13.11 The distribution of the curvature and bending behavior of the riser...

      14 Chapter 14Figure 14.1 Bending stiffener and bellmouth.Figure 14.2 Global configuration of flexible pipe.Figure 14.3 Load model of flexible pipe.Figure 14.4 Cross section of helical strip.Figure 14.5 Bending hysteresis model of flexible pipe.Figure 14.6 S-N curve for high strength steel.Figure 14.7 Comparison between Goodman’s and Gerber’s theory.Figure 14.8 Schematic of bending stiffener.Figure 14.9 Results of global analysis.Figure 14.10 Time history response of pipe tension.Figure 14.11 Time history response of pipe bending curvature.Figure 14.12 Time history response of stress of helical strip at top point.Figure 14.13 Results of global analysis.

      15 Chapter 15Figure 15.1 Umbilical cross-section (Bjornstad, 2004).Figure 15.2 IPU dynamic cross-section, super duplex flowline (Heggadal, 2004).Figure 15.3 Diagram of deformations during fabrication and installation.

      16 Chapter 16Figure 16.1 Schematic of helical geometry.Figure 16.2 Time history of friction stress for increased tension model.Figure 16.3 Stress behavior of STU versus SCR.Figure 16.4 FPSO/STU system layout.Figure 16.5 STU layup.Figure 16.6 Outer tube friction forces.

      17 Chapter 17Figure 17.1 Simplified umbilical model with winding angle.

      18 Chapter 18Figure 18.1 Example of subsea umbilical cable structure [1].Figure 18.2 Design flowchart of umbilical cable cross-section [2].Figure 18.3 Design flowchart of umbilical cable cross-section [3].

      19 Chapter 19Figure 19.1 External pressure testing system.Figure 19.2 Testing specimens after buckling.Figure 19.3 Representative volume unit of reinforced layer.Figure 19.4 Cross-section of FGRFP.Figure 19.5 The flow chart of Matlab program.Figure 19.6 Ovality-external pressure curve of FGRFP by using numerical analysis...Figure 19.7 First buckling mode of FGRFP subjected external pressure.Figure 19.8 The curve of external pressure and node displacement at the top of p...Figure 19.9 The curve of external pressure and node displacement at the waist of...Figure 19.10 Diagrammatic drawing for the imperfection’s location.Figure 19.11 The stress nephogram of FGRFP.Figure 19.12 The stress curve at top and waist of pipe’s cross-section change wi...

      20 Chapter 20Figure 20.1 Typical Construction of FGRFP.Figure 20.2 The curves of burst pressure and time.Figure 20.3 FEM of FGRFP.Figure 20.4 Boundary conditions of FGRFP under internal pressure.Figure 20.5 Axial stress distributions of each layer under internal pressure.Figure 20.6 Global and local coordinate systems.Figure 20.7 Axial stress-pressure curve of inner fiber glass reinforced layer (a...Figure 20.8 Axial stress-pressure curve of each layer.Figure 20.9 Effect of winding angle on internal pressure.Figure 20.10 Effect of winding angle on hoop strain and axial strain.Figure 20.11 Effect of D/t ratio on internal pressure.

      21 Chapter 21Figure 21.1 Construction of FGRFP.Figure 21.2 Cross-section of FGRFP.Figure 21.3 Tensile test of the specimen in process.Figure 21.4 Stress-strain data of HDPE from tensile test.Figure 21.5 Failure mode of the specimen.Figure 21.6 Tension-extension relation of three specimens.Figure 21.7 Treatment of reinforced layersFigure 21.8 Interaction force between layers.Figure 21.9 Pipe model in FEM.Figure 21.10 Network of fiberglass in FEM.Figure 21.11 Equivalent cross-section.Figure 21.12 Tension-extension relation from three methods.Figure 21.13 Deformation of FGRFP after extension.Figure 21.14 Radius-extension relation (analytical model and FE model).Figure 21.15 Fiberglass stress variation in different layers (FE model).Figure 21.16 Tension-extension relation of each material (analytical model).Figure 21.17 Comparison between pure PE pipe and FGRFP with the same thickness (...Figure 21.18 The unwinding process of fiberglass (FE model).Figure 21.19 Tension-extension relation of each material in different winding an...Figure 21.20 Contribution of each material in different winding angles (analytic...Figure 21.21 Tension-extension relation of each material in different fiberglass...Figure 21.22 Tension-extension relation of each material in different diameter-t...

      22 Chapter 22Figure 22.1 Structure of FRFP.Figure 22.2 Stress-strain curve from tensile test.Figure 22.3 The four-point facility.Figure 22.4 Diagrammatic sketch of facility.Figure 22.5 The four-point facility.Figure 22.6 Bending deformation of three specimens.Figure 22.7 Curvature-moment curves of three test specimens.Figure 22.8 Simplification of reinforced layer.Figure 22.9 The FEM model of FRFP.Figure 22.10 Boundary condition of the FEM model.Figure 22.11 Comparison of results from bending test, theoretical method, and nu...Figure 22.12 Stress distribution in FEM simulation.Figure 22.13 Effect of wall-thickness.Figure 22.14 Effect of Δ0.

      23 Chapter 23Figure 23.1 Structure of FRFP.Figure 23.2 Torsion deformation of three specimens.Figure 23.3 The cross-section in the bulge area of Specimen 2.Figure 23.4 The cross-section in the bulge area of Specimen 3.Figure 23.5 The damage of reinforced layers of Specimen 1 after parting from out...Figure 23.6 Torque-torsion angle curves of three test specimens.Figure 23.7 Cylindrical coordinate system.Figure 23.8 Relationship between on-axis coordinate (L, T, r) and off-axis coord...Figure 23.9 Front view of FRFP.Figure 23.10 Side view of FRFP.Figure 23.11 Discrete field of one layer before aligning orientation.Figure 23.12 Discrete field of one layer after aligning orientation.Figure 23.13 Deformation and von Mises stress distribution.Figure 23.14 Torque-torsion angle relationship of three methods.Figure 23.15 Torque-torsion angel relations under different winding angles.Figure 23.16 Torque-torsion angel relations under different reinforced layer thi...Figure 23.17 Torque-torsion angel relations under different radius-thickness rat...

      24 Chapter 24Figure 24.1 Schematic diagram of pipeline structure.

      25 Chapter 25Figure 25.1 FGRFP tension time histories.Figure 25.2 FGRFP bending moment time histories.Figure 25.3 Rain flow histogram of tension.Figure 25.4 Rain flow histogram of bending moment.Figure 25.5 Stress nephogram.Figure 25.6 Stress time histories of inner PE layer and outer PE layer.Figure 25.7 Stress time histories of all structural layers. The mean stress of t...Figure 25.8 Stress of 55° layers.Figure 25.9 Stress of −55° layers.Figure 25.10 Comparison of 55° layer and −55° layer (0.75 mm).Figure 25.11 Stress comparison of PE layer under different thickness of fibergla...Figure 25.12 Comparison of 55° layer and −55° layer (0.5 mm).Figure 25.13 Comparison of 55° layer and −55° layer (0.25 mm).Figure 25.14 Stress contrast of reinforcement layer under different thicknesses.Figure 25.15 S-N Curve of FGRFP.

      26 Chapter 26Figure 26.1 Typical flexible riser structure.Figure 26.2 Drawing of FMC end-fitting.Figure 26.3 Interlock structure of carcass.Figure 26.4 Inner liner expander.Figure 26.5 Carcass under external pressure.Figure 26.6 Deformation of carcass during pressure cycling.Figure 26.7 Pc and δcar relationship for different carcass profiles and pipe siz...

      27 Chapter 27Figure 27.1 An example of a bend stiffener.Figure 27.2 Local response model.Figure 27.3 Extreme load description.Figure 27.4 Load contour.Figure 27.5 Capacity curve and bend stiffener performance.Figure 27.6 Bend stiffener geometry.Figure 27.7 Bend stiffener performance.Figure 27.8 Design chart for bend stiffener.

      28 Chapter 28Figure 28.1 Steel tube umbilical or thermoplastic umbilical with spool [1].Figure 28.2 Thermoplastic umbilical [1].Figure 28.3 Thermoplastic umbilical [3].Figure 28.4 Thermoplastic umbilical [4].Figure 28.5 Thermoplastic umbilical [5].Figure 28.6 Thermoplastic Umbilical [7].

      29 Chapter 29Figure 29.1 Degrees of freedom of floating structures.Figure 29.2 The static state of the pipeline under a water depth of 150 m.Figure 29.3 The static state of pipelines at different lay angles.Figure 29.4 Top tension at different lay angles.Figure 29.5 Top tension at different water depths.Figure 29.6 Wave direction distribution.Figure 29.7 Maximum tension at a lay angle of 70°.Figure 29.8 Minimum tension at a lay angle of 70°.Figure 29.9 Minimum bending radius at a lay angle of 70°.Figure 29.10 Maximum tension at the lay angle of 80°.Figure 29.11 Minimum tension at the lay angle of 80°.Figure 29.12 Minimum bending radius at a lay angle of 80°.Figure 29.13 The relationship between the minimum bending radius and the submerg...

      List of Tables

      1 Chapter 2

Скачать книгу