Green Energy. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Green Energy - Группа авторов страница 33

Green Energy - Группа авторов

Скачать книгу

T. He, Q. Huang, A.P. Ramirez, Y. Wang, K.A. Regan, N. Rogado,M.A. Hayward, M.K. Haas, J.S. Slusky, K. Inumara, H.W. Zandbergen, N.P. Ong, R.J. Cava, Superconductivity in the non-oxide perovskite MgCNi3, Nature 411, 54-56, 2001. https://doi.org/10.1038/35075014.

      65. M. Bazzan, C. Sada, Optical waveguides in lithium niobate: recent developments and applications, Appl. Phys. Rev. 2015. https://doi.org/10.1063/1.4931601.

      66. S.S. Shin, E.J. Yeom, W.S. Yang, S. Hur, M.G. Kim, J. Im, J. Seo, J.H. Noh, S. IlSeok, Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostableperovskite solar cells, Science 80, 2017. https://doi.org/10.1126/science.aam6620.

      67. H. Yokokawa, N. Sakai, T. Kawada, M. Dokiya, Thermodynamic stabilities of perovskite oxides for electrodes and other electrochemical materials, Solid State Ionics, 1992. https://doi.org/10.1016/0167-2738(92)90090-C.

      68. M. Gratzel, The rise of highly efficient and stable perovskite solar cells, Acc. Chem. Res. 50, 487-491, 2017. https://doi.org/10.1021/acs.accounts.6b00492.

      69. V.M. Goldschmidt, Die gesetze der Krystallochemie, Naturwissenschaften 14, 477-485, 1926. https://doi.org/10.1007/BF01507527.

      70. G. Kieslich, S. Sun, A.K. Cheetham, An extended Tolerance Factor approach for organic e inorganic perovskites, Chem. Sci. 6, 3430-3433, 2015. https://doi.org/10.1039/C5SC00961H.

      71. W. Travis, E.N.K. Glover, H. Bronstein, D.O. Scanlon, R.G. Palgrave, On the-application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system, Chem. Sci. 7, 4548-4556, 2016. https://doi.org/10.1039/c5sc04845a.

      73. W. Li, Z. Wang, F. Deschler, S. Gao, R.H. Friend, A.K. Cheetham, Chemically diverse and multifunctional hybrid organic-inorganic perovskites, Nat. Rev. Mater. 2017. https://doi.org/10.1038/natrevmats.2016.99.

      74. P.S. Whitfield, N. Herron, W.E. Guise, K. Page, Y.Q. Cheng, I. Milas,M.K. Crawford, Structures, phase transitions and tricriticalbehavior of the hybridperovskite methyl ammonium lead iodide, Sci. Rep. 2016. https://doi.org/10.1038/srep35685.

      75. R. Santbergen, R.J.C. van Zolingen, The absorption factor of crystalline silicon PV cells: a numerical and experimental study, Sol. Energy Mater. Sol. Cells 92, 432-444, 2008. https://doi.org/10.1016/J.SOLMAT.2007.10.005.

      76. C. Quarti, E. Mosconi, J.M. Ball, V. D’Innocenzo, C. Tao, S. Pathak, H.J. Snaith, A. Petrozza, F. De Angelis, Structural and optical properties of methylammonium lead iodide across the tetragonal to cubic phase transition: implications for perovskite solar cells, Energy Environ. Sci. 2016. https://doi.org/10.1039/c5ee02925b.

      77. N.K. Kumawat, A. Dey, A. Kumar, S.P. Gopinathan, K.L. Narasimhan, D. Kabra,Band gap tuning of CH 3 NH 3 Pb(Br 1e x Cl x) 3 hybrid perovskite for blueelectroluminescence, ACS Appl. Mater. Interfaces 7, 13119-13124, 2015. https://doi.org/10.1021/acsami.5b02159.

      78. S.A. Kulkarni, T. Baikie, P.P. Boix, N. Yantara, N. Mathews, S. Mhaisalkar, Bandgap tuning of lead halide perovskites using a sequential deposition process, J. Mater.Chem. A. 2, 9221-9225, 2014. https://doi.org/10.1039/C4TA00435C.

      79. A.M. Ganose, C.N. Savory, D.O. Scanlon, Beyondmethylammonium lead iodide:prospects for the emergent field of ns2 containing solar absorbers, Chem. Commun. 2017. https://doi.org/10.1039/c6cc06475b.

      80. P. Umari, E. Mosconi, F. De Angelis, Relativistic GW calculations on CH3NH3PbI3and CH3NH3SnI3 perovskites for solar cell applications, Sci. Rep. 4, 4467, 2015. https://doi.org/10.1038/srep04467.

      81. A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M.K. Nazeeruddin, M. Gratzel, F. De Angelis, Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedral tilting, Nano Lett. 14, 3608-3616, 2014. https://doi.org/10.1021/nl5012992.

      82. T. Liu, Y. Zong, Y. Zhou, M. Yang, Z. Li, O.S. Game, K. Zhu, R. Zhu, Q. Gong, N.P. Padture, High-performance formamidinium-based perovskite solar cells viamicrostructure-mediated d-to-a phase transformation, Chem. Mater. 2017. https://doi.org/10.1021/acs.chemmater.7b00523.

      83. X. Li, D. Bi, C. Yi, J.-D. Décoppet, J. Luo, S.M. Zakeeruddin, A. Hagfeldt, M. Gratzel, A vacuum flash-assisted solution process for high-efficiency large-areaperovskite solar cells, Science 353, 58-62, 2016. https://doi.org/10.1126/science.aaf8060.

      85. H.-S. Kim, C.-R.Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J.E. Moser, M. Gr€atzel, N.-G. Park, Lead iodideperovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci. Rep. 2, 591, 2012. https://doi.org/10.1038/srep00591.

      86. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, Sequential deposition as a route to high-performance perovskitesensitized solar cells, Nature 499 316-319, 2013. https://doi.org/10.1038/nature12340.

      87. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybridsolar cells based on meso-superstructuredorganometal halide perovskites, Science, 80, 2012. https://doi.org/10.1126/science.1228604.

      88. Y. Fu, F. Meng, M.B. Rowley, B.J. Thompson, M.J. Shearer, D. Ma, R.J. Hamers,J.C. Wright, S. Jin, Solution growth of single crystal methylammonium lead halideperovskite nanostructures for optoelectronic and photovoltaic applications, J. Am. Chem. Soc. 137, 5810-5818, 2015. https://doi.org/10.1021/jacs.5b02651.

Скачать книгу