Machine Vision Inspection Systems, Machine Learning-Based Approaches. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Machine Vision Inspection Systems, Machine Learning-Based Approaches - Группа авторов страница 23
27. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., Matching networks for one shot learning, in: 30th International Conference on Neural Information Processing Systems, pp. 3630–3638, 2016.
28. Bromley, J., Guyon, I., Lecun, Y., Säckinger, E., Shah, R., Signature verification using a “Siamese” time delay neural network, in: 6th International Conference on Neural Information Processing Systems, pp. 737–744, 1993.
29. Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., Lillicrap, T., Metalearning with memory-augmented neural networks, in: International Conference on Machine Learning, pp. 1842–1850, 2016.
30. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., Gradient-based learning applied to document recognition, in: IEEE, vol. 86, pp. 2278–2324, 1998.
31. Kumar, A.D., Novel deep learning model for traffic sign detection using capsule networks, arXiv preprint, arXiv:1805.04424, 1–5, 2018.
32. Zhao, W., Ye, J., Yang, M., Lei, Z., Zhang, S., Zhao, Z., Investigating capsule networks with dynamic routing for text classification, arXiv preprint, arXiv:1804.00538, 1–12, 2018.
33. Lalonde, R. and Bagci, U., Capsules for object segmentation, arXiv preprint, arXiv:1804.04241, 1–9, 2018.
34. Rajasegaran, J., Jayasundara, V., Jayasekara, S., Jayasekara, H., Seneviratne, S., Rodrigo, R., Deepcaps: Going deeper with capsule networks, in: IEEE Conference on Computer Vision and Pattern Recognition, pp. 10725–10733, 2019.
35. Xu, B., Wang, N., Chen, T., Li, M., Empirical evaluation of rectified activations in convolutional network, arXiv preprint, arXiv:1505.00853, 1–5, 2015.
36. Mackay, D.J. and Mac Kay, D.J., Information theory, inference and learning algorithms, Cambridge Universtity Press, Cambridge, United Kingdom, 2003.
37. Kingma, D.P. and Ba, J., Adam: A method for stochastic optimization, arXiv preprint, arXiv:1412.6980, 1–15, 2014.
38. Jarrett, K., Kavukcuoglu, K., Ranzato, M.A., Lecun, Y., What is the best multistage architecture for object recognition?, in: 12th international conference on computer vision, IEEE, pp. 2146–2153, 2009.
39. Ciresan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J., Convolutional neural network committees for handwritten character classification, in: International Conference on Document Analysis and Recognition, IEEE, pp. 1135–1139, 2011.
40. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L., Imagenet: A large- scale hierarchical image database, in: IEEE Conference on computer vision and pattern recognition, IEEE, pp. 248–255, 2009.
41. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L., Microsoft coco: Common objects in context, in: European Conference on Computer Vision, Springer, pp. 740–755, 2014.
1 * Corresponding author: [email protected]
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.