(Не)совершенная случайность. Как случай управляет нашей жизнью. Леонард Млодинов
Чтение книги онлайн.
Читать онлайн книгу (Не)совершенная случайность. Как случай управляет нашей жизнью - Леонард Млодинов страница 21
В 1516 г. Джероламо решил податься в медицину. Он объявил, что собирается покинуть семью и отправиться на учебу в Павию. Фачио, конечно же, хотел, чтобы сын изучал право – в таком случае ему ежегодно выплачивали бы стипендию в 100 крон. После жуткого семейного скандала отец сдался, но по-прежнему не решен был вопрос: на что Джероламо будет жить в Павии без стипендии? Джероламо начал копить деньги, зарабатывая на чтении гороскопов, частных уроках по геометрии, алхимии, астрономии. Кроме того, Джероламо заметил, что в азартных играх ему сопутствует удача, к тому же игра приносила гораздо больше, чем любые другие занятия.
Для тех, кто во времена Кардано испытывал страсть к азартным играм, везде был Лас-Вегас. Повсюду заключали пари, будь то карты, кости, нарды, даже шахматы. Кардано все игры делил на два типа: те, которые требовали применения некой стратеги или умения, и те, победа в которых зависела от чистой случайности. Возьмись Кардано за шахматы, он бы рисковал тем, что его мог обыграть какой-нибудь Бобби Фишер тех времен. Когда же он ставил на парочку кубиков, шансы его были такими же, как и у остальных. Но даже в этих играх Джероламо добился преимущества – он лучше других разобрался в вероятности выигрыша в разных ситуациях. И вот, вступая в мир, где заключают пари, Джероламо стал играть в игры, выигрыш в которых зависел от случая. Прошло немного времени, и он скопил на учебу 1 тыс. крон – в десять раз больше той стипендии, которую хотел для него отец. В 1520 г. Джероламо записался студентом в университет в Павии. И вскоре приступил к работе над теорией азартных игр.
Кардано жил в XVI в., и у него было преимущество – он понимал многое из того, что древние греки в силу своей древности не знали, как не знали римляне, и в чем индийцы делали лишь первые шаги, пользуясь арифметикой как эффективным инструментом. Именно последние развили позиционную систему счисления по целочисленному основанию 10, которая стала общепринятой около 700 г. н. э.[64] Они же совершили большой прорыв в арифметике дробей, что просто неоценимо для анализа вероятностей, поскольку вероятность того, что событие произойдет, всегда меньше единицы.
63
Gerolamo Cardano, quoted in Wykes,
64
Kline,