Meine Herren, dies ist keine Badeanstalt. Georg von Wallwitz

Чтение книги онлайн.

Читать онлайн книгу Meine Herren, dies ist keine Badeanstalt - Georg von Wallwitz страница 9

Автор:
Серия:
Издательство:
Meine Herren, dies ist keine Badeanstalt - Georg von Wallwitz

Скачать книгу

Physik Anwendungen finden.31

      In Königsberg wurde Hilbert, der den eigentlich üblichen einjährigen Wehrdienst irgendwie vermieden hatte, 1886 mit 24 Jahren Privatdozent. Er verhielt sich aber nach wie vor eher wie ein Student als wie eine akademische Respektsperson, denn er hatte irgendwann, als die mathematischen Spaziergänge weniger wurden, wohl doch den Reiz der Tanzcafés am Königsberger Schlossteich entdeckt. Er tanzte gern und legte sich dabei nur selten auf eine bestimmte Partnerin fest, wie es damals die Sitte verlangt hätte. Er stellte fest, dass er bei den jungen Frauen recht gut ankam, und entwickelte daraus eine Überzeugung, die er bis ins hohe Alter beibehielt.

      Zur Ausbildung eines Jung-Akademikers gehörten auch Reisen an die Hotspots des Faches. Also machte er sich 1885/86 zu den Größen des Fachs auf, nach Leipzig, wo zu dieser Zeit Felix Klein eine größere Gruppe von vielversprechenden oder bereits arrivierten Köpfen um sich versammelt hatte. Hilbert machte dort offensichtlich Eindruck und wurde weitergereicht nach Paris, wo der geniale Henri Poincaré lehrte. Viel gab es nicht zu berichten über das Treffen mit dem schüchternen und oft nervösen Franzosen (der einige Jahre unter preußischer Besatzung gelebt hatte und daher gut Deutsch sprach). Hilbert musste das nicht persönlich nehmen, denn Poincaré hatte zeitlebens nur wenige Schüler. Charles Hermite, der Minkowskis jugendliche Glanztat vor der Akademie verteidigt hatte, war hingegen sehr viel offener und freundlicher. Aber er war alt und allzu viel Neues war ihm in letzter Zeit nicht mehr eingefallen. Hilbert sammelte immerhin Eindrücke und Anregungen, schnupperte in den verschiedensten Ecken seines Fachs und konnte nach einem knappen Jahr zufrieden nach Königsberg zurückkehren.

      Zu seinem Herzensthema in dieser Zeit entwickelte sich die Invariantentheorie. Invarianten tauchen an den verschiedensten Stellen auf in der Mathematik, etwa in der Projektiven Geometrie, ein Fach, das von den Malern der Renaissance angestoßen worden war. Diese wollten Bilder von dreidimensionalen Figuren auf gekrümmte Flächen projizieren, in die sie eigentlich nicht gehörten. Malt man eine menschliche Figur in die Kuppel einer Kirche, wie müssen dann die Proportionen im Gemälde sein, damit es aus der Perspektive des Gläubigen in der Kirchenbank einigermaßen realistisch aussieht? Welche Maßverhältnisse ändern sich, und welche bleiben invariant? Ein ähnliches Problem trat bei der Projektion des Globus auf eine ebene Landkarte auf: Wo wird das Bild verzerrt und wo bleibt es invariant? Oder: Winkel sind invariant gegenüber Skalierung, Drehung oder Spiegelung. Die Frage nach dem Gleichbleibenden taucht immer und immer wieder auf.

      Diese praktischen Fragen führten zu einer Vielzahl von komplexen Fragestellungen. Dabei hatte sich als ein zentrales Problem die Frage nach der Endlichkeit der Basis eines Invariantensystems herauskristallisiert. Was das genau ist, muss hier nicht interessieren. An der Lösung dieses Problems arbeiteten die Mathematiker mit der größten Ausdauer, denn sie schien seitenlange Rechnungen zu erfordern. Der größte Ruhm warte auf den, der sich am seltensten verrechnete. Hilbert hatte sich mit dem Problem in seiner Habilitationsschrift beschäftigt und konnte ebenfalls als Experte gelten. Da er aber, wie er von sich selbst immer wieder sagte, nicht der Fleißigste war, kam er irgendwann auf die Idee, nach einem einfacheren Weg zu suchen, als nur Papier mit Gleichungssystemen zu füllen. Und diese Idee war sein Durchbruch. Anstatt Gleichungssysteme zu bearbeiten, fragte Hilbert sich, welches die Konsequenzen wären, wenn es keine endliche Basis gäbe, und fand heraus, dass dies zu einem Widerspruch führen würde. Damit konnte er zwar nicht sagen, wie eine konkrete Basis aussah, aber er wusste, dass es sie gab.32

      Damit geriet Hilbert in einen Proteststurm aus der Richtung all der Mathematiker, die gerne Gleichungen lösten und Freunde konkreter Konstruktionen waren. Ihnen schien es ein logischer Taschenspielertrick zu sein, was Hilbert sich da erlaubte. Paul Gordan, bis zu Hilberts Auftritt der »König der Invarianten«, nannte Hilberts Vorgehen »Theologie«33 (wo Existenzbeweise in der Tat gerne geführt werden), es habe nichts mit Mathematik zu tun. Und Leopold Kronecker schimpfte sowieso über alles, was nicht nach einem Algorithmus konstruiert wurde. Er war der unbarmherzige alte Mann der deutschen Mathematik, dem Strenge und einfaches Konstruieren in endlichen Schritten über alles ging. Nach dem Muster der Schulmathematik sollte ein Beweis geführt werden, so wie man mit Zirkel und Lineal ein gleichseitiges Dreieck in immer der gleichen Weise konstruieren kann. Die Folge der fest vorgegebenen Schritte, nach welchen auch die Schüler mit den einfachsten Möglichkeiten eine Zeichnung oder Rechnung ausführen konnten, nannte man Algorithmus (jede konkrete schrittweise Handlungsanweisung nach dem Muster eines Kochrezeptes kann ein Algorithmus sein, benannt nach dem Mathematiker al-Chwarizmi, der um 800 in Bagdad wirkte). In der konkreten Einfachheit und Sicherheit der Algorithmen lag für viele Mathematiker ihr Charme. Alles, was ein »unpräzises, logisch-philosophisches Fundament« hatte, war eine intellektuelle Spielerei ohne Boden. Die Mathematik hielt Kronecker für eine Naturwissenschaft, die nicht mit Definitionen beginnen konnte,34 sondern nur mit den gottgegebenen natürlichen Zahlen und der Beobachtung der Natur. Definitionen in der Mathematik mussten »nicht bloß in sich widerspruchsfrei sein […], sondern auch der Erfahrung entnommen«.35 Greifbar und anschaulich sollte die Mathematik sein, kein logisches Formelspiel ohne Grund in der Realität. Er konnte nichts mit Existenzbeweisen anfangen, bei denen aus der Annahme der Nichtexistenz ein Widerspruch entstand. Was war ein Beweis wert, der im Dunkeln ließ, wie die Lösung konkret aussah?

      Kroneckers ablehnende Haltung war ein echtes Problem für Hilbert, denn der Beweis, das Herzstück jedes Satzes, ist gerade in der höheren Mathematik abhängig von der Anerkennung durch die Kollegen. Ein Beweis wird praktisch nie vollkommen ausgeführt, mit jedem Zwischenschritt und in jedem Detail. In jeder Argumentationskette wird ein Vorwissen über bereits bewiesene Sätze und ein Konsens über erlaubte Schlusstechniken verlangt. Die höhere Mathematik wird nicht durch eine besondere ästhetische oder metaphysische Qualität zu etwas Höherem, sondern durch ihren freien Umgang mit der niederen Mathematik, deren Ergebnisse sie unkommentiert voraussetzt. Je höher die Mathematik, desto skizzenhafter werden ihre Argumente, damit sie sich nicht über hunderte von Seiten ziehen müssen. Der Beweis wird hier zu einer sehr losen Kette, die ihre Gültigkeit von außen, von der Akzeptanz der anderen Mathematiker erhält.36 So kann es passieren, dass mathematische Ergebnisse und Sätze über längere Zeit akzeptiert und verwendet werden, obwohl sich später herausstellt, dass sie falsch sind. Und umgekehrt kann es vorkommen, dass Beweise, die nur von einem oder wenigen Mathematikern verstanden und akzeptiert werden, sich nicht allgemein durchsetzen.37

      Der Streit wurde in aller Öffentlichkeit ausgetragen, mit einer Reihe von Notizen in den Mathematischen Annalen. Am Ende setzte Hilbert sich durch, aber die Auseinandersetzung hinterließ Narben. Von nun an spürte er den Geist Kroneckers bei jeder mathematischen Arbeit über seine Schulter schauen, und insbesondere in seinen späteren Arbeiten zur Logik versuchte er stets den Bezug zur endlichen Konstruktion herzustellen. Aber immerhin war er nun in Mathematikerkreisen berühmt, sogar noch mehr als seine genialischen Jugendfreunde. Nichts fördert die Bekanntheit mehr als ein öffentlich ausgetragener Streit.

      Als Hurwitz 1892 eine Stelle als ordentlicher Professor in Zürich antrat, wurde es in Königsberg dennoch erst einmal einsam um Hilbert. Ihm blieben zwar einige begabte Studenten (u. a. Arnold Sommerfeld), aber unter den Professoren fehlten nun die Schwergewichte, mit denen er seine Ambitionen verwirklichen konnte. In eben diese Zeit mangelnder mathematischer Ansprache fiel sein Entschluss, Käthe Jerosch zu heiraten, um deren Gunst er sich schon eine Weile bemüht hatte. Er hatte zwar noch keine gute Stellung, aber hervorragende Aussichten, und es war nur eine Frage der Zeit, bis er an eine bedeutende Universität berufen würde. Ein gutes Jahr später, 1893, kam ein Kind zur Welt, Franz, drei Jahre später folgte der Ruf als ordentlicher Professor nach Göttingen. Dort hatten die Schwergewichte Gauss, Dirichlet und Riemann gelehrt, die der Stadt und ihrer Universität auf dem Feld der Mathematik im 19. Jahrhundert eine in alle Welt ausstrahlende Aura verliehen hatten. In Göttingen bauten sich die Hilberts bald ein schönes Haus und das Leben war nun wohlgeordnet wie die natürlichen Zahlen. Hilbert hatte eine Frau, ein Kind, ein Haus, für die Vollendung des Idylls fehlte nur noch ein Hund. Mitte 30 war er jetzt, im kreativsten Mathematiker-Alter, er hatte Karriere gemacht und war auf dem besten Wege, ein bedeutender

Скачать книгу