Manual de información y herramientas estadísticas aplicadas a la investigación de mercado. Carlos José Castillo
Чтение книги онлайн.
Читать онлайн книгу Manual de información y herramientas estadísticas aplicadas a la investigación de mercado - Carlos José Castillo страница 4
• Investigación causal. Se utiliza la investigación causal cuando se quiere evidencia de las relaciones causales, es decir, identificar la causa y el efecto que produce un determinado suceso. Tanto la investigación descriptiva como la causal cuentan con un buen conocimiento de los fenómenos por analizar, por lo que se puede hacer una predicción de las relaciones causa-efecto que se deberán comprobar posteriormente. La herramienta más usada en este tipo de investigación es el diseño de experimentos.
En la tabla 1 se muestra un resumen de las características de los diferentes tipos de investigación de mercado.
Tabla 1. Resumen de las características de los tipos de investigación de mercado
Fuente: Zikmun y Babin, 2008
2.1 ¿Cómo elegir un diseño de investigación?
En la figura 2 se presentan los pasos para elegir un diseño:
Figura 2. Pasos para elegir un diseño de investigación
Elaboración propia
2.2 Variables por estudiar
En general, se define la estadística como la ciencia que provee diferentes métodos para caracterizar poblaciones. Un conjunto de los clientes relacionados con determinada empresa puede ser una población objetivo que interese caracterizar con el fin de diseñar y aplicar determinadas técnicas o procedimientos que permitan influir en las decisiones respecto al producto o servicio que la empresa ofrece al mercado. Esta caracterización se logra mediante la definición de variables, entendiendo a una variable como cualquier característica o atributo que puede tomar más de un valor en circunstancias diferentes. Así, la calificación que un cliente le puede asignar a un producto es una variable que puede tomar valores diferentes, como excelente, bueno, regular o malo. Otra variable podría ser el consumo mensual del producto o servicio, expresado en unidades monetarias.
En este contexto, es posible afirmar que una de las tareas más importantes para un estudio de investigación de mercado es determinar qué variables tienen la suficiente importancia como para ser incluidas en él. Como la naturaleza de los mercados dependen de los productos o servicios que la empresa genera, las variables tendrán que ser definidas en este contexto particular. Ayudará en esta fase nutrirse del marco teórico relacionado con el negocio y de la experiencia que determinadas personas que conocen el entorno puedan aportar para definir las variables más importantes, de manera especial de aquellas que trabajan en los departamentos de ventas.
Los valores que en un determinado estudio puedan asumir las variables son los que determinan la naturaleza de los indicadores, que podrían ser favorables o no para la empresa y que, en definitiva, darán lugar al planteamiento de tal o cual estrategia de mercadeo. En tal sentido, es importante saber la clasificación de las variables con el fin de conocer los tipos de indicadores que es posible hallar en el estudio. Pino (2006), presenta la clasificación siguiente:
• Por su naturaleza: cualitativas o cuantitativas. Las variables cualitativas pueden asumir valores que no tienen significado numérico; por tanto, las operaciones definidas para los números no son aplicables. Generalmente, son cualidades de los elementos estudiados, tales como nivel socioeconómico, actitudes frente a determinadas situaciones, color de preferencia, expectativas de calidad de un producto, etcétera. Este tipo de variable se subclasifica en ordinales y nominales. En las primeras, se puede apreciar un orden natural en las categorías que asume (la variable calidad puede tomar categorías como excelente, buena, regular, mala), mientras que en las variables cualitativas nominales no se evidencia un orden natural de las categorías (la variable color puede asumir valores como rojo, negro, azul, verde), pues no presentan una relación de orden por sí mismas.
Las variables cuantitativas pueden asumir valores que tienen significado numérico, y, en tal sentido, tienen una relación de orden entre los valores posibles. Al poseer propiedades numéricas, es posible calcular indicadores o medidas resumen, como la media aritmética, por ejemplo.
Las variables cuantitativas se subclasifican en continuas y discretas. Se considera que una variable es continua si esta puede asumir cualquier valor en un intervalo de los números reales (para una población dada, el peso de una persona adulta podría tomar cualquier valor entre 30 y 150 kg, por ejemplo), y discreta si solo es posible que tome una cantidad limitada de estos valores (para una determinada población de clientes, el número de veces que visita un supermercado podría ser 0, 1, 2, 3, 4 o 5 veces por semana).
• Por su dominio: dependientes, independientes e intervinientes. Las variables dependientes son aquellas que en determinadas circunstancias toman valores que varían debido a la influencia de otras. Así, la demanda se puede considerar como una variable dependiente si se toma en cuenta que podría estar influenciada por el precio del producto o servicio, o la intensidad de las acciones de mercadeo. En este planteamiento, las variables independientes son las que ejercen influencia en la dependiente (para nuestro ejemplo serían el precio y la intensidad de las acciones de mercadeo). Cualquiera de estas variables independientes podría ser considerada como dependientes para otro estudio o diseño de investigación.
La variable interviniente ejerce influencia como accesoria a cualquier variable independiente; así, por ejemplo, la edad del trabajador es interviniente en el caso de que se esté incluyendo el rendimiento de los trabajadores como variable independiente.
• Por su grado de abstracción: teóricas, intermedias o empíricas. Se considera que las variables teóricas o abstractas no son observables o medibles de forma directa; por ejemplo, el potencial productivo de una empresa. Por otro lado, las variables intermedias se definen para poder dimensionar la variable abstracta; por ejemplo, el capital humano o el capital tecnológico para explicar la variable potencial productivo. Finalmente, las variables empíricas resultan de descomponer las variables intermedias de tal manera que se facilite la medición directa; así, por ejemplo, de la variable potencial tecnológico se puede derivar la variable empírica tipo de maquinaria disponible, monto de las inversiones en equipo de telecomunicaciones o procesamiento de datos, etcétera (Ñaupas, Mejía, Novoa y Villagómez, 2013).
2.3 Parámetros de interés
En general, se puede afirmar que el objetivo que se persigue con la investigación estadística es caracterizar poblaciones, de tal manera que se facilite la toma de decisiones en condiciones de incertidumbre. Esta caracterización se logra mediante el cálculo de ciertas medidas con todos los elementos de la población de estudio; un ejemplo típico es la media aritmética, que de manera resumida nos permite definir el comportamiento de una variable en dicha población. Así, si el promedio de las edades de todos los trabajadores de una empresa es 25 años, reflejará que esta población de trabajadores es bastante joven.
El parámetro, para ser considerado como tal, debe ser un valor único para un momento dado y, además, debe ser el resultado de un cálculo que incluya a todas las unidades de análisis de la población en estudio. La proporción de clientes de Lima Metropolitana que prefieren consumir determinada marca de un artículo es un ejemplo de parámetro. Otro es la desviación estándar de los diámetros de todas las varillas de fierro de construcción de una pulgada producidas durante el año 2015 en una fábrica determinada.
En los estudios de investigación de mercado que se tengan que realizar, uno de los aspectos importantes que definir es la determinación de