The Formation of Vegetable Mould Through the Action of Worms. Чарльз Дарвин
Чтение книги онлайн.
Читать онлайн книгу The Formation of Vegetable Mould Through the Action of Worms - Чарльз Дарвин страница 5
Pieces of the leaves of cabbage, turnip, horse-radish and onion were left on the pots during 22 days, and were all attacked and had to be renewed; but during the whole of this time leaves of an Artemisia and of the culinary sage, thyme and mint, mingled with the above leaves, were quite neglected excepting those of the mint, which were occasionally and very slightly nibbled. These latter four kinds of leaves do not differ in texture in a manner which could make them disagreeable to worms; they all have a strong taste, but so have the four first mentioned kinds of leaves; and the wide difference in the result must be attributed to a preference by the worms for one taste over another.
Mental Qualities.—There is little to be said on this head. We have seen that worms are timid. It may be doubted whether they suffer as much pain when injured, as they seem to express by their contortions. Judging by their eagerness for certain kinds of food, they must enjoy the pleasure of eating. Their sexual passion is strong enough to overcome for a time their dread of light. They perhaps have a trace of social feeling, for they are not disturbed by crawling over each other’s bodies, and they sometimes lie in contact. According to Hoffmeister they pass the winter either singly or rolled up with others into a ball at the bottom of their burrows. [32] Although worms are so remarkably deficient in the several sense-organs, this does not necessarily preclude intelligence, as we know from such cases as those of Laura Bridgman; and we have seen that when their attention is engaged, they neglect impressions to which they would otherwise have attended; and attention indicates the presence of a mind of some kind. They are also much more easily excited at certain times than at others. They perform a few actions instinctively, that is, all the individuals, including the young, perform such actions in nearly the same fashion. This is shown by the manner in which the species of Perichæta eject their castings, so as to construct towers; also by the manner in which the burrows of the common earth-worm are smoothly lined with fine earth and often with little stones, and the mouths of their burrows with leaves. One of their strongest instincts is the plugging up the mouths of their burrows with various objects; and very young worms act in this manner. But some degree of intelligence appears, as we shall see in the next chapter, to be exhibited in this work—a result which has surprised me more than anything else in regard to worms.
Food and Digestion.—Worms are omnivorous. They swallow an enormous quantity of earth, out of which they extract any digestible matter which it may contain; but to this subject I must recur. They also consume a large number of half-decayed leaves of all kinds, excepting a few which have an unpleasant taste or are too tough for them; likewise petioles, peduncles, and decayed flowers. But they will also consume fresh leaves, as I have found by repeated trials. According to Morren [33] they will eat particles of sugar and liquorice; and the worms which I kept drew many bits of dry starch into their burrows, and a large bit had its angles well rounded by the fluid poured out of their mouths. But as they often drag particles of soft stone, such as of chalk, into their burrows, I feel some doubt whether the starch was used as food. Pieces of raw and roasted meat were fixed several times by long pins to the surface of the soil in my pots, and night after night the worms could be seen tugging at them, with the edges of the pieces engulfed in their mouths, so that much was consumed. Raw fat seems to be preferred even to raw meat or to any other substance which was given them, and much was consumed. They are cannibals, for the two halves of a dead worm placed in two of the pots were dragged into the burrows and gnawed; but as far as I could judge, they prefer fresh to putrid meat, and in so far I differ from Hoffmeister.
Léon Fredericq states [34] that the digestive fluid of worms is of the same nature as the pancreatic secretion of the higher animals; and this conclusion agrees perfectly with the kinds of food which worms consume. Pancreatic juice emulsifies fat, and we have just seen how greedily worms devour fat; it dissolves fibrin, and worms eat raw meat; it converts starch into grape-sugar with wonderful rapidity, and we shall presently show that the digestive fluid of worms acts on starch. [35a] But they live chiefly on half-decayed leaves; and these would be useless to them unless they could digest the cellulose forming the cell-walls; for it is well known that all other nutritious substances are almost completely withdrawn from leaves, shortly before they fall off. It has, however, now been ascertained that some forms of cellulose, though very little or not at all attacked by the gastric secretion of the higher animals, are acted on by that from the pancreas. [35b]
The half-decayed or fresh leaves which worms intend to devour, are dragged into the mouths of their burrows to a depth of from one to three inches, and are then moistened with a secreted fluid. It has been assumed that this fluid serves to hasten their decay; but a large number of leaves were twice pulled out of the burrows of worms and kept for many weeks in a very moist atmosphere under a bell-glass in my study; and the parts which had been moistened by the worms did not decay more quickly in any plain manner than the other parts. When fresh leaves were given in the evening to worms kept in confinement and examined early on the next morning, therefore not many hours after they had been dragged into the burrows, the fluid with which they were moistened, when tested with neutral litmus paper, showed an alkaline reaction. This was repeatedly found to be the case with celery, cabbage and turnip leaves. Parts of the same leaves which had not been moistened by the worms, were pounded with a few drops of distilled water, and the juice thus extracted was not alkaline. Some leaves, however, which had been drawn into burrows out of doors, at an unknown antecedent period, were tried, and though still moist, they rarely exhibited even a trace of alkaline reaction.
The fluid, with which the leaves are bathed, acts on them whilst they are fresh or nearly fresh, in a remarkable manner; for it quickly kills and discolours them. Thus the ends of a fresh carrot-leaf, which had been dragged into a burrow, were found after twelve hours of a dark brown tint. Leaves of celery, turnip, maple, elm, lime, thin leaves of ivy, and, occasionally those of the cabbage were similarly acted on. The end of a leaf of Triticum repens, still attached to a growing plant, had been drawn into a burrow, and this part was dark brown and dead, whilst the rest of the leaf was fresh and green. Several leaves of lime and elm removed from burrows out of doors were found affected in different degrees. The first change appears to be that the veins become of a dull reddish-orange. The cells with chlorophyll next lose more or less completely their green colour, and their contents finally become brown. The parts thus affected often appeared almost black by reflected light; but when viewed as a transparent object under the microscope, minute specks of light were transmitted, and this was not the case with the unaffected parts of the same leaves. These effects, however, merely show that the secreted fluid is highly injurious or poisonous to leaves; for nearly the same effects were produced in from one to two days on various kinds of young leaves, not only by artificial pancreatic fluid, prepared with or without thymol, but quickly by a solution of thymol by itself. On one occasion leaves of Corylus were much discoloured by being kept for eighteen hours in pancreatic fluid, without any thymol. With young and tender leaves immersion in human saliva during rather warm weather, acted in the same manner as the pancreatic fluid, but not so quickly. The leaves in all these cases often became infiltrated with the fluid.
Large leaves from an ivy plant growing on a wall were so tough that they could not be gnawed by worms, but after four days they were affected in a peculiar manner by the secretion poured out of their mouths. The upper surfaces of the leaves, over which the worms had crawled, as was shown by the dirt left on them, were marked in sinuous lines, by either a continuous or broken chain of whitish and often star-shaped dots, about 2 mm. in diameter. The appearance thus presented was curiously like that of a leaf, into which the larva of some minute insect had burrowed. But my son Francis, after making and examining sections, could nowhere find that the cell-walls had been broken down or that the epidermis had been penetrated. When the section passed through the whitish dots, the grains of chlorophyll