Lectures on Quantum Field Theory. Ashok Das

Чтение книги онлайн.

Читать онлайн книгу Lectures on Quantum Field Theory - Ashok Das страница 41

Автор:
Жанр:
Серия:
Издательство:
Lectures on Quantum Field Theory - Ashok Das

Скачать книгу

we see that in the space of light-like momentum states W2 ∝ Π2. Since Π1, Π2 correspond to generators of “translation”, their eigenvalues can take any value. As a result, if W2 ≠ 0 in this space, we note from (4.122) that spin can take an infinite number of values which, as we have already pointed out, does not correspond to any physical system. On the other hand, if W2 = 0 in this space of states, then it follows from (4.123) that (h corresponds to the helicity quantum number)

image

      (Alternatively, we can say that Π1|p, h〉 = 0 = Π2|p, h〉 and this is the reason for the earlier assertion.) This corresponds to the one dimensional representation of E2 known as the “degenerate” representation. Clearly, such a state would correspond to the highest or the lowest helicity state. Furthermore, if our theory is also invariant under parity (or space reflection), the space of physical states would also include the state with the opposite helicity (recall that helicity changes sign under space reflection, see (3.148)). As a result, massless theories with nontrivial spin that are parity invariant would have two dimensional representations corresponding to the highest and the lowest helicity states, independent of the spin of the particle. On the other hand, if the theory is not parity invariant, the dimensionality of the representation will be one dimensional, as we have seen explicitly in the case of massless fermion theories describing neutrinos.

      Incidentally, the fact that the massless representations have to be one dimensional, in general, can be seen in a heuristic way as follows. Let us consider spin as arising from a circular motion. Then, it is clear that since a massless particle moves at the speed of light, the only consistent circular motion a massless particle can have, is in a plane perpendicular to the direction of motion (otherwise, some component of the velocity would exceed the speed of light). In other words, in such a case, spin can only be either parallel or anti-parallel to the direction of motion leading to the one dimensional nature of the representation. However, if parity (space reflection) is a symmetry of the system, then we must have states corresponding to both the circular motions leading to the two dimensional representation.

      1.V. Bargmann, Irreducible unitary representations of the Lorentz group, Annals of Mathematics 48, 568 (1947).

      2.A. Das and S. Okubo, Lie Groups and Lie Algebras for Physicists, Hindustan Publishing, India and World Scientific Publishing, Singapore (2014).

      3.E. Wigner, On unitary representations of the inhomogeneous Lorentz group, Annals of Mathematics 40, 149 (1939).

      4.E. Wigner, Group Theory and its Applications to the Quantum Mechanics of Atomic Spectra, Academic Press, New York (1959).

      __________________

      1See, for example, Quantum Mechanics: A Modern Introduction, A. Das and A. C. Melissinos (Gordon and Breach), page 289 or Lectures on Quantum Mechanics, A. Das (Hindustan Book Agency, New Delhi), page 182 (note there is a typo in the sign of the 23 element for L2 in this reference).

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEAkACQAAD/4QAiRXhpZgAATU0AKgAAAAgAAQESAAMAAAABAAEAAAAAAAD/ 7AARRHVja3kAAQAEAAAAPAAA/+EDLWh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC8APD94cGFj a2V0IGJlZ2luPSLvu78iIGlkPSJXNU0wTXBDZWhpSHpyZVN6TlRjemtjOWQiPz4NCjx4OnhtcG1l dGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IkFkb2JlIFhNUCBDb3JlIDYuMC1j MDAyIDc5LjE2NDM2MCwgMjAyMC8wMi8xMy0wMTowNzoyMiAgICAgICAgIj4NCgk8cmRmOlJERiB4 bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPg0K CQk8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIiB4bWxuczp4bXBNTT0iaHR0cDovL25zLmFk b2JlLmNvbS94YXAvMS4wL21tLyIgeG1sbnM6c3RSZWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFw LzEuMC9zVHlwZS9SZXNvdXJjZVJlZiMiIHhtbG5zOnhtcD0iaHR0cDovL25zLmFkb2JlLmNvbS94 YXAvMS4wLyIgeG1wTU06RG9jdW1lbnRJRD0ieG1wLmRpZDo4QkY2NzYwNEE4OTUxMUVBQURFNkNC Q0QxNzdFODk1QiIgeG1wTU06SW5zdGFuY2VJRD0ieG1wLmlpZDo4QkY2NzYwM0E4OTUxMUVBQURF NkNCQ0QxNzdFODk1QiIgeG1wOkNyZWF0b3JUb29sPSJBZG9iZSBQaG90b3Nob3AgMjAyMCBNYWNp bnRvc2giPg0KCQkJPHhtcE1NOkRlcml2ZWRGcm9tIHN0UmVmOmluc3RhbmNlSUQ9IjgyOUYyQTM1 M0M4QTQyQUYzNEI0RkMxNDI3RERENDI4IiBzdFJlZjpkb2N1bWVudElEPSI4MjlGMkEzNTNDOEE0 MkFGMzRCNEZDMTQyN0RERDQyOCIvPg0KCQk8L3JkZjpEZXNjcmlwdGlvbj4NCgk8L3JkZjpSRE

Скачать книгу