Carbon Nanofibers. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Carbon Nanofibers - Группа авторов страница 30

Carbon Nanofibers - Группа авторов

Скачать книгу

      Catalysts are known to play an important role in chemical transformations and reactions as they increase the speed of a reaction, lower the activation energy for the reaction, act as a facilitator and bring the reactive species together more effectively, and create a higher yield of one species when two or more products are formed. Recently, nanocatalysts have begun being used because nanomaterials are more effective than conventional catalysts due to their extremely small size and very high surface area-to-volume ratio. Moreover, at the nanoscale, unique properties are found which are not present in their macroscopic counterparts. Hence, for synthesis of CNF, consideration of use of nanocatalyst is very important. In this chapter different types of catalysts and their various preparation methods were presented. Finally, synthesis of carbon nanofiber (CNF) using nanocatalysts were discussed with special emphasis.

      1. Liu, Z., Gan, L.M., Hong, L., Chen, W., Lee, J.Y., Carbon-supported Pt nanoparticles as catalysts for proton exchange membrane fuel cells. J. Power Sources, 139, 73, 2005.

      2. Solsona, B., Graham, J.H., Tomas, G., Taylor, S.H., Supported gold catalysts for the total oxidation of alkanes and carbon monoxide. New J. Chem., 6, 2004.

      3. Singh, S.B. and Tandon, P.K., Catalysis: A Brief Review on Nano-Catalyst. J. Energy Chem. Eng., 2, 3, 106–115, 2014.

      4. Gupta, V., M.S. thesis, Dept. of Chemical and Materials Engineering, Univ, of Cincinnati, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1136846342

      5. Rodriguez-Manzo, J.A., Terrones, M., Terrones, H., Kroto, H.W., Sun, L., Banhart, F., In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles. Nat. Nanotechnol., 2, 307–311, 2007.

      6. Sharon, M. and Sharon, M., Carbon Nano Forms and Application, McGraw Hill, USA, 2010.

      7. Menezes, W.G., Zielasek, Thiel, V.K., Hartwig, A., Bäumer, M., Effect of particle size, composition and support on catalytic activity of AuAg nanoparticles prepared in reverse block copolymer micelles as nanoreactors. J. Catal., 299, 222–231, 2013.

      8. Cheng, Y., Zheng, Y., Wang, Y., Bao, F., Qin, Y., Synthesis and magnetic properties of nickel ferrite nano-octahedra. J. Solid-State Chem., 178, 2394–2397, 2005.

      9. Xu, H., Zeng, L., Xing, S., Xian, Y., Jin, L., Microwave- irradiated synthesized platinum nanoparticles/carbon nanotubes for oxidative determination of trace Arsenic (III). Electrochem. Commun., 10, 551–554, 2010.

      10. Men, Y., Higuchi, M., Yamamoto, K., Synthesis of DPA dendron encapsulated gold clusters with metal-assembling function. Sci. Technol. Adv. Mater., 7, 2, 139–144, 2006.

      11. Cheney, B.A., Lauterbach, J.A., Chen, J.G., Reverse micelle synthesis and characterization of supported Pt/Ni bimetallic catalyst on ℷAl2O3 Appl. Catal. A: Gen., 394, 41–47, 2011.

      12. Oza, G., Pandey, S., Mewada, A., Sharon, M., Extracellular biosynthesis of gold nanoparticles using Salmonella typhi. Der Chimica Sinica, 3, 5, 1041–46, 2012. (ISSN: 0976–8505).

      13. Oza, G., Pandey, S., Sharon, M., Extra cellular bio-synthesis of gold nanoparticles using Escherichia coli and deciphering the role of lactate dehydrogenase using LDH knockout E.coli. J. At. Mol., 2, 4, 301–311, 2012. ISSN–2277–1247.

      14. Mewada, A., Pandey, S., Oza, G., Shah, R., Thakur, M., Gupta, A., Sharon, M., A novel report on assessing pH dependent role of nitrate reductase on green biofabrication of gold nanoplates and nanocubes, J. Bionanosci., 7, 2, 174–180, 2013.

      15. Chen, D., Rønning, M., Tøtdal, B., Vrålstad, T., Ochoa-Fernández, E., Holmen, A., Large- scale synthesis of carbon nanofiber on Ni-Fe-Al hydrotalcite derived catalysts:II: Effect of Ni/Fe composition on CNF synthesis from ethylene and carbon monoxide. Appl. Catal. A, 338, 147–158, 2008.

      16. Narayanan, K.B. and Sakthivel, N., Synthesis and characterization of nanogold composite using cylindrocldium floridanum and heterogenous catalysis in the degradation of 4-nitrphenol. J. Hazard. Mater., 189, 519–525, 2011.

      17. Pandey, S., Mewada, A., Thakur, M., Shinde, S., Shah, R., Oza, G., Sharon, M., Synthesis and Cetrifugal Separation of Fluorescent Carbon Dots at Room Temperature. J. Nanosci., 2013, 2013. (ISSN: 2356–749X).

      18. Pandey, S., Oza, G., Gupta, A., Shah, R., Sharon, M., Sharon, The possible involvement of nitrate reductase from Aspargus racemosus in biosynthesis of gold nanoparticles. M Eur. J. Exp. Biol., 2, 3, 475–483, 2012.

      19. Thakur, M., Pandey, S., Mewada, A., Shah, R., Oza, G., Sharon, M., Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 109, 344–347, 2013.

      20. Malik, R., Garg, T., Goyal, A.K., Rath, G., Polymeric nanofibers: targeted gastro-retentive drug delivery systems. J. Drug Target., 23, 2, 24, 2014.

      21. Ahmad, N., Sharma, S., Singh, V.N., Shamsi, Fatma, S.F.A., Mehta, B.F., Biosynthesis of silver nanoparticles from Desmodium triflorum: A novel approach towards weed utilization. Biotechnol. Res. Int., 2011, 454090, 8, 2011.

      22. Panigrahi, S., Kundu, S., Ghosh, S., Nath, S., Pal, T., General method of synthesis for metal nanoparticles. J. Nanopart. Res., 6, 4, 411–414, 2004.

      23. Mude, N., Ingle, A., Gade, A., Rai, M., Synthesis of Silver nanoparticles using Callus extract of Carica papaya- A first Report. J. Plant Biochem. Biotechnol., 18, 83–86, 2009.

      24. Dizaj, S.M., Lotfipour, F., Barzegar-Jalali, M., Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C, 44, 278–284, 2014.

      25. Endo, M., Kenji, T., Susumu, I., Kiyoharu, K., Minoru, S., Kroto, H.W., The production and structure of pyrolytic carbon nanotubes. J. Phys. Chem. Solids, 54, 12, 1841–1848, 1993.

      26.

Скачать книгу