Administrative Records for Survey Methodology. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Administrative Records for Survey Methodology - Группа авторов страница 19

Administrative Records for Survey Methodology - Группа авторов

Скачать книгу

built at least partially from administrative data. For instance, the U.S. Census Bureau has used a business register – a list of all domestic businesses – derived from administrative tax filings since at least 1968. This register is the frame for its quinquennial censuses and annual surveys of business activity (DeSalvo, Limehouse, and Klimek 2016). It is also used to link businesses across surveys, to link surveyed businesses to other administrative record data, and as a direct source of statistical information on the levels and growth of business activity, published as the County Business Patterns (CBP) and Business Dynamics Statistics (BDS).1 Similar examples can be found in most countries that maintain some kind of registry for their businesses. In many countries, similar centrally maintained registers are used as frames for censuses and surveys of a country’s inhabitants and workers. Chapter 17 illustrates the Swedish approach to this problem for a national population census.2 The Institute for Employment Research (IAB), the research institute of the German Employment Agency, uses social security notifications filed by firms, and data generated from the administration of its mandated programs, to sample firms and workers. McMaster University and later Statistics Canada used administrative job termination notifications (“record of employment”) filed by employers to survey departing employees for the Canadian Out-of-Employment Panel (COEP) (Browning, Jones, and Kuhn 1995). Other uses of administrative data in NSOs include linkage for quality purposes (Chapters 8, 14, and 15), and data augmentation (Chapter 12 for the National Center for Health Statistics [NCHS] approach).

      In addition, the increasing computerization of administrative records, has facilitated more extensive linking of previously disconnected administrative databases, to create more comprehensive and extensive information. Methods to link databases within administrative units based on common identifiers are easy to implement (see Chapter 9 for more details). In the United States, which does not have a legal national identifier or ID document, the increased use of the Social Security Number (SSN) has facilitated linkage of government databases and among commercial data providers. In many European countries, individuals have national identifiers, and efforts are underway to allow for cross-border linkages within the European Union, in order to improve statistics on the workforce and the businesses of the common economic area created by what is now called the European Union. However, even when common identifiers are not available, linkage is possible (see Chapter 15).

      The result has been that data on individuals, households, and business have become richer, collected from an increasing variety of sources, both as designed surveys and censuses, as well as organically created “administrative” data. The desire to allow policy makers and researchers to leverage the rich linked data has been held back, however, by the concerns of citizens and businesses about privacy. In the 1960s in the United States, researchers had proposed a “National Data Bank” with the goal of combining survey and administrative data for use by researchers. Congress held hearings on the matter, and ultimately the project did not go forward (Kraus 2013). Instead, and partially as a consequence, privacy laws were formalized in the 1970s. The U.S. “Privacy Act” (Public Law 93-579, 5 U.S.C. § 552a), passed in 1974, specifically prohibited “matching” programs, linking data from different agencies. More recently, the 2016 Australian Census elicited substantial controversy when the Australian Bureau of Statistics (ABS) decided to keep identifiable data collected through the census for a substantially longer time period, with the explicit goal of enabling linkages between the census and administrative data, as well as linkages across historical censuses (Australian Bureau of Statistics 2015; Karp 2016).

      There are no methods for disclosure limitation and confidentiality protection specifically designed for linked data. Protecting data constructed by linking administrative records, survey responses, and “found” transaction records relies on the same methods as might be applied to each source individually. It is the richness inherent in the linkages, and in the administrative information available to some potential intruders, that pose novel challenges.

      Statistical confidentiality can be viewed as “a body of principles, concepts, and procedures that permit confidentiality to be afforded to data, while still permitting its use of for statistical purposes” (Duncan, Elliot, and Salazar-González 2011, p. 2). In order to protect the confidentiality of the data they collect, NSOs and survey organizations (henceforth referred to generically as data custodians) employ many methods. Very often, data are released to the public as tabular summaries. Many of the protection mechanisms in use today evolved to protect published tables against disclosure. Generically, the idea is to limit the publication of cells with “too few” respondents, where the notion of “too few” is assessed heuristically.

      We will not provide a detailed history or taxonomy of statistical disclosure limitation (SDL) and formal privacy models, instead will refer the reader to other publications on the topic (Duncan, Elliot, and Salazar-González 2011; Dwork and Roth 2014; FCSM 2005). We do need to set up the problem, which we will do by reviewing suppression, coarsening, swapping, and noise infusion (input and output). These are widely used techniques and the main issues that arise in applications to linked data can be understood with reference to these methods.

      Researchers, however, are not indifferent to these strategies. A researcher who needs detailed geographic variation will benefit from data in which the complementary suppressions are based on removing detailed industries. A researcher who needs detailed industry variation will prefer data with complementary suppression based on geography. Ultimately, the committee that chooses the complementary suppression strategy will determine which research uses are possible and which are ruled out.

      But the problem is deeper than this: suppression is a very ineffective SDL technique. Researchers working with the cooperation of the BLS have shown that the suppression strategy used in major BLS business data publications provides almost no protection if it is applied, as is currently the case, to each data release separately (Holan et al. 2010). Some agencies may use cumulative suppression strategies in their sequential data

Скачать книгу