Encyclopedia of Glass Science, Technology, History, and Culture. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Encyclopedia of Glass Science, Technology, History, and Culture - Группа авторов страница 175
7 All systems have configurational fluctuations at a finite temperature. The present formulation of TCT applies only to the average network configuration so that the influence of fluctuations is not accounted for. Clearly, extension of TCT to include configurational fluctuations is desirable to model fluctuation‐based properties.
In spite of these limitations, it is important to emphasize that the success of TCT in some systems has been remarkable. But with increasing need to apply TCT to a large variety of systems, it is necessary to develop a theoretically sound basis to resolve these issues.
Acknowledgements
The author is extremely thankful to both reviewers for their thoughtful comments.
References
1 1 Phillips, J.C. (1979). Topology of covalent non‐crystalline solids I. J. Non Cryst. Solids 34: 153–181.
2 2 Zachariasen, W.H. (1932). The atomic arrangement in glass. J. Am. Chem. Soc. 54: 3841–3851.
3 3 Cooper, A.R. (1978). Zachariasen's rules, Madelung constant, and network topology. Phys. Chem. Glasses 19: 60–68.
4 4 Gupta, P.K. and Cooper, A.R. (1990). Topologically disordered networks of rigid polytopes. J. Non Cryst. Solids 123: 14–21.
5 5 Gupta, P.K. (1993). Rigidity, connectivity, and glass‐forming ability. J. Am. Ceram. Soc. 76: 1088–1095.
6 6 Gupta, P.K. (1999). Topologically disordered networks of rigid polytopes: applications to noncrystalline solids and constrained viscous sintering. In: Rigidity Theory and Applications (eds. M.F. Thorpe and P.M. Duxbury), 173–190. New York: Kluwer Academic.
7 7 Gupta, P.K. and Mauro, J.C. (2009). Composition dependence of glass transition temperature and fragility, I. a topological model incorporating temperature‐dependent constraints. J. Chem. Phys. 130: 094503.
8 8 Mauro, J.C., Gupta, P.K., and Loucks, R.J. (2009). Composition dependence of glass transition temperature and fragility, II. A topological model of alkali‐borate liquids. J. Chem. Phys. 130: 234503.
9 9 Bauchy, M. and Micaulaut, M. (2011). Atomic scale foundation of temperature‐dependent bonding constraints in network glasses and liquids. J. Non Cryst. Solids 357: 2530–2537.
10 10 Smedskjaer, M.M., Mauro, J.C., Youngman, R.E. et al. (2011). Topological principles of borosilicate glass chemistry. J. Phys. Chem. B 115: 12930–12946.
11 11 Phillips, J.C. (1982). The physics of glass. Phys. Today 35: 27–33.
12 12 Thorpe, M.F. (1983). Continuous deformations in random networks. J. Non Cryst. Solids 57: 355–370.
13 13 Naumis, G.G. and Romero‐Arias, J.R. (2010). The problem of glass formation and the low frequency vibrational modes anomalies. Rev. Mex. Fis. 56: 97–105.
14 14 Mauro, J.C. (2011). Topological constraint theory of glass. Ceramics Bull. 90: 31–37.
15 15 Salmon, P.S. (2007). Structure of liquids and glasses in the Ge‐Se binary system. J. Non Cryst. Solids 353: 2959–2974.
16 16 Loehman, R.E. (1985). Oxynitride glasses. Treatise Mat. Sci. Technol. 26: 119–149.
17 17 Narayan, R.A. and Zwanziger, J.W. (2003). The glass forming ability of tellurites: a rigid polytope approach. J. Non Cryst. Solids 316: 273–280.
18 18 Sung, Y.‐M. and Kwon, S.‐J. (1999). Glass‐forming ability and stability of calcium aluminate optical glasses. J. Mater. Sci. Lett. 18: 1267–1269.
19 19 Jahn, S. and Madden, P.A. (2007). Structure and dynamics in liquid alumina: simulations with an ab initio interaction potential. J. Non Cryst. Solids 353: 3500–3504.
20 20 Wright, A.C. (2015). My borate life: an enigmatic journey. Int. J. Appl. Glass Sci. 6: 45–63.
21 21 Thorpe, M.F., Jacobs, D.J., Chubynsky, M.V., and Phillips, J.C. (2000). Self organization in network glasses. J. Non Cryst. Solids 266–269: 859–866.
22 22 Boolchand, P., Gunasekera, K., and Bhosle, S. (2012). Midgap states, Raman scattering, glass homogeneity, percolative rigidity and stress transitions in chalcogenides. Phys. Stat. Sol. B https://doi.org/10.1002/pssb.201200368.
23 23 Vailles, Y., Qu, T., Micoulaut, M., and Boolchand, P. (2005). Direct evidence of rigidity loss and self‐organization in silicate glasses. J. Phys. Condens. Matter 17: 4889–4896.
24 24 Wang, T., Gulbiten, O., Wang, R. et al. (2014). Relative contribution of stoichiometry and mean coordination to the fragility of Ge‐As – Se glass forming liquids. J. Phys. Chem. B 118: 1436–1442.
25 25 Shatnawi, M., Farrow, C.L., Chen, P. et al. (2008). Search for a structural response to the intermediate phase in GexSe(1‐x) glasses. Phys. Rev. B 77: 094134–094111.
26 26 Boolchand, P. and Thorpe, M.F. (1994). Glass‐forming tendency, percolation of rigidity, and one‐fold coordinated atoms in covalent networks. Phys. Rev. B 50: 10366–10368.
27 27 Wang, Y., Wells, J., Georgiev, D.G. et al. (2001). Sharp rigid to floppy phase transition induced by dangling ends in a network glass. Phys. Rev. Lett. 87: 185503–185504.
28 28 Tichy, L. and Ticha, H. (2000). Remark on the glass forming ability in GexSe(1‐x) and AsxSe(1‐x) systems. J. Non Cryst. Solids 261: 277–281.
29 29 Gjersing, E.L., Sen, S., and Youngman, R.E. (2010). Mechanistic understanding of the effect of rigidity percolation on structural relaxation in supercooled germanium selenide liquids. Phys. Rev. B 82: 014203–014205.
30 30 Tatsumisago, M., Halfpap, B.L., Green, J.L. et al. (1990). Fragility of Ge‐As – Se glass‐forming liquids in relation to rigidity percolation, and the Kauzmann paradox. Phys. Rev. Lett. 64: 1549–1552.
31 31 Senapati, U. and Varshneya, A.K. (1996). Viscosity of chalcogenide glass forming liquids: an anomaly in the strong and fragile classification. J. Non Cryst. Solids 197: 210–218.
32 32 Naumis, G.G. (2006). Glass transition phenomenology and flexibility: an approach using the energy landscape formalism. J. Non Cryst. Solids 352: 4865–4870.
33 33 Mauro, J.C., Yue, Y., Ellison, A.J. et al. (2009). Viscosity of glass‐forming liquids. Proc. Natl. Acad. Sci. U. S. A. 106: 19780–19784.
34 34 Smedskjaer, M.M., Mauro, J.C., Sen, S., and Yue, Y. (2012). Quantitative design of glassy materials using the temperature dependent constraint theory. Chem. Mater. 22: 5358–5365.
35 35 Zhang, C., Hu, L., Yue, Y., and Mauro, J.C. (2010). Fragile to strong transition in metallic glass forming liquids. J. Chem. Phys. 133: 014508/7.
Note
1 Reviewers:P.