Encyclopedia of Glass Science, Technology, History, and Culture. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Encyclopedia of Glass Science, Technology, History, and Culture - Группа авторов страница 201

Encyclopedia of Glass Science, Technology, History, and Culture - Группа авторов

Скачать книгу

the temperature T0 of the viscosity divergence is actually close to the Kauzmann temperature (Table 2) even though they may depend on the specific sample and the method of measurement.

      Another way out is to take with great caution the extrapolations of the heat capacity and other thermodynamic functions of the supercooled liquid. As long pointed out [e.g. 11], there is no current theory for these properties in liquid state analogous to the Einstein or Debye models that provide functional forms at all temperatures for heat capacities of crystals.

      As derived from strikingly old questions in glass science, these counterintuitive features indicate that glasses cannot be described by equilibrium thermodynamic states only. Nonequilibrium thermodynamics is, therefore, likely to be useful to characterize glasses and the glass transition.

      The questions raised by the Kauzmann paradox or the PD ratio clearly illustrate the need for a more fundamental thermodynamic description of the glass transition. Following the pioneering work of Tool [12, 13] and Davies and Jones [9], different approaches and phenomenological models have been developed to deal with the glass transition range itself, many within the framework of classical nonequilibrium thermodynamics [4, 11].

      The first physical models have then relied on two different approaches. In free‐volume theories, one generally considers that the dynamics of the system is determined by the free space present around its atoms, which makes configurational rearrangements more or less easy. In entropy theories, among which that of Adam‐Gibbs is the best known [15], the same determining role is attributed to configurational entropy. In other words, these theories assign the strong increase of relaxation times with decreasing temperatures and the eventual structural freezing in to decreases of either free volume or configurational entropy. Other more recent theories of the glass transition rely on mode coupling, random first‐order transitions or energy‐landscape descriptions [e.g. 16]. These different approaches have the common goal of finding the exact expression for the structural relaxation time, or its distribution, as a function of controlling parameters such as temperature or pressure, or structural order parameter.

      For the sake of simplicity, let us consider here conditions of constant pressure. If the additional parameter ξ is taken into account, the total differential of the enthalpy of a system can be written as the sum of two contributions (considering pressure, the generalization to three contributions would be obvious):

      (12)equation

      The isobaric heat capacity is written as:

      When the rate of change of ξ becomes much smaller than the rate of change of temperature, (dξ/dt)P ≪ (dT/dt)P, the configurational contribution is negligible.

      (15)equation

      The next step thus consists in taking into account the time dependence of ξ at every temperature through the temperature dependence of the relaxation time τ. The simplest way to do this is to assume a simple exponential decay for ξ at fixed temperature and pressure:

      where ξeq(P,T) is the equilibrium value of the order parameter, i.e. a variable characterizing the liquid structure that depends only on P and T. Although the relaxation time itself has been given different temperature dependences with Arrhenius, VFT, or others laws (Chapter 3.7), the important point is that they are all of an exponential nature with respect to T or P to ensure the structural freezing‐in of the system.

Скачать книгу