Supramolecular Polymers and Assemblies. Andreas Winter

Чтение книги онлайн.

Читать онлайн книгу Supramolecular Polymers and Assemblies - Andreas Winter страница 35

Автор:
Жанр:
Серия:
Издательство:
Supramolecular Polymers and Assemblies - Andreas Winter

Скачать книгу

formed via assembly of smaller entities by specific directional secondary interactions. Supramolecular polymers exhibit properties that are comparable to those of well‐known traditional macromolecules; however, reversibility of the secondary interaction represents an additional feature that gives rise to new applications: supramolecular polymers typically represent species in their thermodynamic equilibrium and their properties can be adjusted by applying external stimuli (e.g. changes in temperature, concentration, or solvent). Moreover, supramolecular polymers in non‐dissipative and/or nonequilibrium states also have to be considered and might be important in the future for the fine‐tuning of, e.g. shape, molecular organization, chirality, and/or dispersity of supramolecular polymers [40]. These aspects have been proposed to be crucial for utilitarian applications, as in energy conversion or biomedicine areas [148].

      In recent years, new concepts have evolved addressing the issue on how to control supramolecular polymerizations regarding the molecular structure and even the dispersity of the self‐assembled materials. From these, the so‐called living supramolecular polymerization represents a highly promising approach to prepare novel, designer, supramolecular materials via control over, e.g. their shape, size, and dispersity.

      Going beyond a rather theoretical discussion, various types of supramolecular polymers will be introduced in the subsequent chapters – differentiated by the nature of their underlying non‐covalent/supramolecular interactions. Nonetheless, a detailed knowledge of the kinetic and thermodynamic driving forces for the formation of these materials remains a fundamental requirement.

      1 1 Staudinger, H. (1920). Ber. Dtsch. Chem. Ges. 53: 1073–1085.

      2 2 Carothers, W.H. (1931). Chem. Rev. 8: 353–426.

      3 3 Schneider, H.‐J. and Strongin, R.M. (2009). Acc. Chem. Res. 42: 1489–1500.

      4 4 Shunmugam, R., Gabriel, G.J., Aamer, K.A., and Tew, G.N. (2010). Macromol. Rapid Commun. 31: 784–793.

      5 5 Wang, X.‐S., Guerin, G., Wang, H. et al. (2007). Science 317: 644–647.

      6 6 Schappacher, M. and Deffieux, A. (2008). Science 319: 512–1515.

      7 7 Tang, C.‐B., Lennon, E.M., Fredrickson, G.H. et al. (2008). Science 322: 429–432.

      8 8 Ruokolainen, J., Mäkinen, R., Torkkeli, M. et al. (1998). Science 280: 557–560.

      9 9 Pochan, D.J., Chen, Z.‐Y., Cui, H.‐G. et al. (2004). Science 306: 94–97.

      10 10 Cui, H.‐G., Chen, Z.‐Y., Zhong, S. et al. (2007). Science 317: 647–650.

      11 11 Cornelissen, J.J.L.M., Fischer, M., Sommerdijk, N.A.J.M., and Nolte, R.J.M. (1998). Science 280: 1427–1430.

      12 12 Fréchet, J.M.J. (2002). Proc. Natl. Acad. Sci. U.S.A. 99: 4782–4787.

      13 13 Kato, T., Mizoshita, N., and Kishimoto, K. (2006). Angew. Chem. Int. Ed. 45: 36–68.

      14 14 Kato, T., Hirai, Y., Nakaso, S., and Moriyama, M. (2007). Chem. Soc. Rev. 36: 1857–1867.

      15 15 Sivakova, S. and Rowan, S.J. (2005). Chem. Soc. Rev. 34: 9–21.

      16 16 Pollino, J.M. and Weck, M. (2005). Chem. Soc. Rev. 34: 193–207.

      17 17 Weck, M. (2007). Polym. Int. 56: 453–460.

      18 18 Percec, V., Dulcey, A.E., Balagurusamy, V.S.K. et al. (2004). Nature 430: 764–768.

      19 19 Feldman, K.E., Kade, M.J., de Greef, T.F.A. et al. (2008). Macromolecules 41: 4694–4700.

      20 20 Gohy, J.‐F. (2009). Coord. Chem. Rev. 253: 2214–2225.

      21 21 Lehn, J.‐M. (1988). Angew. Chem. Int. Ed. Engl. 27: 89–112.

      22 22 Lehn, J.‐M. (1990). Angew. Chem. Int. Ed. Engl. 29: 1304–1319.

      23 23 Lehn, J.‐M. (1993). Science 260: 1762–1763.

      24 24 Lehn, J.‐M. (2002). Polym. Int. 51: 825–839.

      25 25 Ciferri, A. (2005). Supramolecular Polymers. New York, NY: Taylor & Francis.

      26 26 de Greef, T.F.A., Smulders, M.M.J., Wolffs, M. et al. (2009). Chem. Rev. 109: 5687–5754.

      27 27 Brunsveld, L., Folmer, B.J.B., Meijer, E.W., and Sijbesma, R.P. (2001). Chem. Rev. 101: 4071–4098.

      28 28 Ciferri, A. (2000). Supramolecular Polymers. New York, NY: Marcel Dekker.

      29 29 Fox, J.D. and Rowan, S.J. (2009). Macromolecules 42: 6823–6835.

      30 30 Binder, W.H. and Zirbs, R. (2007). Adv. Polym. Sci. 207: 1–78.

      31 31 Bouteiller, L. (2007). Adv. Polym. Sci. 207: 79–112.

      32 32 Rieth, S., Baddeley, C., and Badjić, J.D. (2007). Soft Matter 3: 137–154.

      33 33 de Greef, T.F.A. and Meijer, E.W. (2010). Aust. J. Chem. 63: 596–598.

      34 34 Hofmeier, H. and Schubert, U.S. (2005). Chem. Commun.: 2423–2432.

      35 35 Hoogenboom, R., Fournier, D., and Schubert, U.S. (2007). Chem. Commun.: 155–162.

      36 36 Winter, A. and Schubert, U.S. (2016). Chem. Soc. Rev. 45: 5311–5357.

      37 37 Yang, L., Tan, X., Wang, Z., and Zhang, X. (2015). Chem. Rev. 115: 7196–7239.

      38 38 Friese, V.A. and Kurth, D.G. (2009). Curr. Opin. Colloid Interface Sci. 14: 81–93.

      39 39 Winter, A., Hager, M.D., and Schubert, U.S. (2012). Supramolecular polymers. In: Polymer Science: A Comprehensive Review, vol. 5 (eds. H.‐W. Schmidt and M. Ueda), 269–310. Amsterdam: Elsevier BV.

      40 40 Sorrenti, A., Leira‐Iglesias, J., Markvoort, A.J. et al. (2017). Chem. Soc. Rev. 46: 5476–5490.

      41 41 Ciferri, A. (2002). Macromol. Rapid Commun. 23: 511–529.

      42 42 Odian, G.G. (2004). Principles of Polymerization, 4e. Hoboken, NJ: Wiley‐Interscience.

      43 43 Zhao, D.‐H. and Moore, J.S. (2003). Org. Biomol. Chem. 1: 3471–3491.

      44 44

Скачать книгу