Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей. Мартин Форд

Чтение книги онлайн.

Читать онлайн книгу Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей - Мартин Форд страница 7

Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей - Мартин Форд

Скачать книгу

не говорит об отсутствии врожденных знаний у людей, детей и животных. Более того, у большинства животных знания исключительно врожденные. Муравью не приходится долго учиться, он действует в соответствии с заложенной в него программой. Но чем выше существо в иерархии интеллекта, тем большую роль в его жизнедеятельности начинает играть обучение. Человека отличает именно соотношение врожденных и приобретенных навыков.

      М. Ф.: Я бы хотел уточнить некоторые из этих концепций. В 1980-е гг., после периода забвения, снова появился интерес к нейронным сетям, но речи о множестве слоев и глубине еще не шло. Вы участвовали в развитии глубокого обучения. Не могли бы вы простыми словами объяснить, что это такое?

      И. Б.: Глубокое обучение – это совокупность методов машинного обучения. Но если в случае классического машинного обучения компьютеры учатся по прецедентам, глубокое обучение больше напоминает процесс, происходящий в мозге человека.

      Эти методы работы над ИИ появились как продолжение более раннего изучения нейронных сетей. Слово «глубокие» указывает на появление у сетей дополнительных уровней, со своими вариантами представления информации. Мы надеемся, что углубление сетей позволит машине представлять более абстрактные вещи.

      М. Ф.: То есть под слоями вы подразумеваете уровни абстракции? И если в качестве примера взять изображение, то первым уровнем будут пикселы, затем контуры и т. д.?

      И. Б.: Да, все правильно.

      М. Ф.: Правда ли то, что компьютеры до сих пор не понимают, что такое объект?

      И. Б.: До некоторой степени компьютер понимает. Скажем, кошка понимает, что такое дверь, но не так, как человек. Даже люди обладают разными уровнями понимания многих вещей, а наука призвана углубить это понимание. Люди интерпретируют образы в контексте трехмерного мира благодаря стереоскопическому зрению и опыту познания. Человек получает не визуальную, а физическую модель объекта. Компьютер интерпретирует изображения на примитивном уровне, но для множества приложений этого достаточно.

      М. Ф.: Правда ли, что глубокое обучение стало возможным благодаря методу обратного распространения ошибки, основная идея которого состоит в том, что информацию об ошибке можно отправить от выходов сети к ее входам, корректируя каждый слой в зависимости от конечного результата?

      И. Б.: Да, метод обратного распространения стал краеугольным камнем успехов глубокого обучения. Он позволяет присваивать данным коэффициенты доверия (credit assignment), то есть рассчитывать, как для корректного поведения всей сети должны измениться внутренние нейроны. В контексте нейронных сетей об этом методе заговорили в начале 1980-х гг., когда я только начинал работать самостоятельно. Одновременно с Яном Лекуном метод развивали Джеффри Хинтон и Дэвид Румельхарт (David Rumelhart). Идея не новая, но примерно до 2006 г. особых успехов в обучении глубоких сетей не наблюдалось. Сейчас мы имеем механизм внимания, память и способность не только классифицировать, но и генерировать изображения.

Скачать книгу