The Logic of Human Mind, Self-Awareness & Way We Think. Джон Дьюи
Чтение книги онлайн.
Читать онлайн книгу The Logic of Human Mind, Self-Awareness & Way We Think - Джон Дьюи страница 48
and leads to laziness and presumption,
3. We have not yet made the acquaintance of the most harmful feature of the empirical method. Mental inertia, laziness, unjustifiable conservatism, are its probable accompaniments. Its general effect upon mental attitude is more serious than even the specific wrong conclusions in which it has landed. Wherever the chief dependence in forming inferences is upon the conjunctions observed in past experience, failures to agree with the usual order are slurred over, cases of successful confirmation are exaggerated. Since the mind naturally demands some principle of continuity, some connecting link between separate facts and causes, forces are arbitrarily invented for that purpose. Fantastic and mythological explanations are resorted to in order to supply missing links. The pump brings water because nature abhors a vacuum; opium makes men sleep because it has a dormitive potency; we recollect a past event because we have a faculty of memory. In the history of the progress of human knowledge, out and out myths accompany the first stage of empiricism; while "hidden essences" and "occult forces" mark its second stage. By their very nature, these "causes" escape observation, so that their explanatory value can be neither confirmed nor refuted by further observation or experience. Hence belief in them becomes purely traditionary. They give rise to doctrines which, inculcated and handed down, become dogmas; subsequent inquiry and reflection are actually stifled. (Ante, p. 23.)
and to dogmatism
Certain men or classes of men come to be the accepted guardians and transmitters—instructors—of established doctrines. To question the beliefs is to question their authority; to accept the beliefs is evidence of loyalty to the powers that be, a proof of good citizenship. Passivity, docility, acquiescence, come to be primal intellectual virtues. Facts and events presenting novelty and variety are slighted, or are sheared down till they fit into the Procrustean bed of habitual belief. Inquiry and doubt are silenced by citation of ancient laws or a multitude of miscellaneous and unsifted cases. This attitude of mind generates dislike of change, and the resulting aversion to novelty is fatal to progress. What will not fit into the established canons is outlawed; men who make new discoveries are objects of suspicion and even of persecution. Beliefs that perhaps originally were the products of fairly extensive and careful observation are stereotyped into fixed traditions and semi-sacred dogmas accepted simply upon authority, and are mixed with fantastic conceptions that happen to have won the acceptance of authorities.
§ 2. Scientific Method
Scientific thinking analyzes the present case
In contrast with the empirical method stands the scientific. Scientific method replaces the repeated conjunction or coincidence of separate facts by discovery of a single comprehensive fact, effecting this replacement by breaking up the coarse or gross facts of observation into a number of minuter processes not directly accessible to perception.
Illustration from suction of empirical method,
If a layman were asked why water rises from the cistern when an ordinary pump is worked, he would doubtless answer, "By suction." Suction is regarded as a force like heat or pressure. If such a person is confronted by the fact that water rises with a suction pump only about thirty-three feet, he easily disposes of the difficulty on the ground that all forces vary in their intensities and finally reach a limit at which they cease to operate. The variation with elevation above the sea level of the height to which water can be pumped is either unnoticed, or, if noted, is dismissed as one of the curious anomalies in which nature abounds.
of scientific method
Relies on differences,
Now the scientist advances by assuming that what seems to observation to be a single total fact is in truth complex. He attempts, therefore, to break up the single fact of water-rising-in-the-pipe into a number of lesser facts. His method of proceeding is by varying conditions one by one so far as possible, and noting just what happens when a given condition is eliminated. There are two methods for varying conditions.24 The first is an extension of the empirical method of observation. It consists in comparing very carefully the results of a great number of observations which have occurred under accidentally different conditions. The difference in the rise of the water at different heights above the sea level, and its total cessation when the distance to be lifted is, even at sea level, more than thirty-three feet, are emphasized, instead of being slurred over. The purpose is to find out what special conditions are present when the effect occurs and absent when it fails to occur. These special conditions are then substituted for the gross fact, or regarded as its principle—the key to understanding it.
and creates differences
The method of analysis by comparing cases is, however, badly handicapped; it can do nothing until it is presented with a certain number of diversified cases. And even when different cases are at hand, it will be questionable whether they vary in just these respects in which it is important that they should vary in order to throw light upon the question at issue. The method is passive and dependent upon external accidents. Hence the superiority of the active or experimental method. Even a small number of observations may suggest an explanation—a hypothesis or theory. Working upon this suggestion, the scientist may then intentionally vary conditions and note what happens. If the empirical observations have suggested to him the possibility of a connection between air pressure on the water and the rising of the water in the tube where air pressure is absent, he deliberately empties the air out of the vessel in which the water is contained and notes that suction no longer works; or he intentionally increases atmospheric pressure on the water and notes the result. He institutes experiments to calculate the weight of air at the sea level and at various levels above, and compares the results of reasoning based upon the pressure of air of these various weights upon a certain volume of water with the results actually obtained by observation. Observations formed by variation of conditions on the basis of some idea or theory constitute experiment. Experiment is the chief resource in scientific reasoning because it facilitates the picking out of significant elements in a gross, vague whole.
Analysis and synthesis again
Experimental thinking, or scientific reasoning, is thus a conjoint process of analysis and synthesis, or, in less technical language, of discrimination and assimilation or identification. The gross fact of water rising when the suction valve is worked is resolved or discriminated into a number of independent variables, some of which had never before been observed or even thought of in connection with the fact. One of these facts, the weight of the atmosphere, is then selectively seized upon as the key to the entire phenomenon. This disentangling constitutes analysis. But atmosphere and its pressure or weight is a fact not confined to this single instance. It is a fact familiar or at least discoverable as operative in a great number of other events. In fixing upon this imperceptible and minute fact as the essence or key to the elevation of water by the pump, the pump-fact has thus been assimilated to a whole group of ordinary facts from which it was previously isolated. This assimilation constitutes synthesis. Moreover, the fact of atmospheric pressure is itself a case of one of the commonest of all facts—weight or gravitational force. Conclusions that apply to the common fact of weight are thus transferable to the consideration and interpretation of the relatively rare and exceptional case of the suction of water. The suction pump is seen to be a case of the same kind or sort as the siphon, the barometer, the rising of the balloon, and a multitude of other things with which at first sight it has no connection at all. This is another instance of the synthetic or assimilative phase of scientific thinking.
If we revert to the advantages of scientific over empirical thinking, we find that we now have the clue to them.
Lessened liability to error
(a) The increased security, the added factor of certainty or proof, is due to the substitution