Heterogeneous Catalysts. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Heterogeneous Catalysts - Группа авторов страница 41

Heterogeneous Catalysts - Группа авторов

Скачать книгу

of control on particle size distribution remains very modest. The recent advancements in new carbon materials (CNTs, graphene, nanodiamonds, carbon nitride) along with the advances in the nanotechnology synthesis and characterization techniques have enabled the “catalyst by design” approach as complemented by theoretical and computational techniques.

      High level of control of catalyst size and distribution has been achieved on carbon materials, from single‐atom catalysts and clusters of few atoms to nanometric particles. This has been possible in part because the nanostructure and surface chemistry of new carbon materials are well defined and tunable. The structure can be chosen between 0D (nanodiamonds), 1D (CNT), 2D (graphene, carbon nitride), and 3D carbon materials (aerogels). There is a variety of carbons from pure sp2 (graphene) to pure sp3 (nanodiamond) hybridization, carbons doped with different types and amounts of heteroatoms (doped graphene, carbon nitride).

      The range of carbon materials to choose as catalyst support is also open to carbon materials synthesized at the laboratory, starting from molecular building blocks. This group includes graphene derivatives (graphyne and graphdiyne), hydrothermal carbonization of carbohydrate precursors, or pyrolysis of MOFs. The preparation of catalyst on these carbon materials is still in its infancy and brings a wide field to be explored. Heteroatoms, especially nitrogen, doped on carbon materials can act as a surrogate of ligands in homogeneous catalysts stabilizing (SACs and tuning their activity. Therefore, SACs stabilized on carbon materials benefit from the high turnover and selectivity of homogeneous and enzymatic catalysts. On the other side, they also benefit from high stability and robustness of heterogeneous catalysis. Traditional wet chemistry synthesis techniques are applicable with an enhanced level of control on the new carbon materials. Emerging synthesis techniques (e.g. colloidal nanotechnology, ALD) have been successfully applied for the preparation of a myriad of new carbon‐based catalysts. Therefore, the array of carbon materials and the advances in preparation techniques have enriched the “carbon toolbox” for the preparation of tailored catalysts.

      1 1 Lam, E. and Luong, J.H.T. (2014). ACS Catal. 4: 3393–3410.

      2 2 Cao, S., Monnier, J.R., Williams, C.T. et al. (2015). J. Catal. 326: 69–81.

      3 3 Dreyer, D.R. and Bielawski, C.W. (2011). Chem. Sci. 2: 1233–1240.

      4 4 Su, D.S., Wen, G., Wu, S. et al. (2017). Angew. Chem. Int. Ed. 56: 936–964.

      5 5 Mistry, H., Behafarid, F., Reske, R. et al. (2016). ACS Catal. 6: 1075–1080.

      6 6 Dreyer, D.R., Park, S., Bielawski, C.W., and Ruoff, R.S. (2010). Chem. Soc. Rev. 39: 228–240.

      7 7 Tang, X.‐Z., Li, X., Cao, Z. et al. (2013). Carbon 59: 93–99.

      8 8 Jeon, E.K., Seo, E., Lee, E. et al. (2013). Chem. Commun. 49: 3392–3394.

      9 9 Su, C., Tandiana, R., Balapanuru, J. et al. (2015). J. Am. Chem. Soc. 137: 685–690.

      10 10 Yin, H., Tang, H., Wang, D. et al. (2012). ACS Nano 6: 8288–8297.

      11 11 Ferdinand, H., Alessandro, B., Giovanni, V. et al. (2017). Chem. Eur. J. 23: 15283–15288.

      12 12 Chen, Y., Zhu, Q.‐L., Tsumori, N., and Xu, Q. (2015). J. Am. Chem. Soc. 137: 106–109.

      13 13 Gao, Y., Chen, X., Zhang, J. et al. (2015). Adv. Mater. 27: 4688–4694.

      14 14 García‐Bordejé, E., Víctor‐Román, S., Sanahuja‐Parejo, O. et al. (2018). Nanoscale 10: 3526–3539.

      15 15 Bai, H., Li, C., Wang, X., and Shi, G. (2011). J. Phys. Chem. C 115: 5545–5551.

      16 16 Cong, H.‐P., Ren, X.‐C., Wang, P., and Yu, S.‐H. (2012). ACS Nano 6: 2693–2703.

      17 17 Wufeng, C., Sirong, L., Chunhua, C., and Lifeng, Y. (2011). Adv. Mater. 23: 5679–5683.

      18 18 Fan, L., Li, B., Rooney, D.W. et al. (2015). Chem. Commun. 51: 1597–1600.

      19 19 Sahoo, P.K., Aepuru, R., Panda, H.S., and Bahadur, D. (2015). Sci. Rep. 5: 17726.

      20 20 Jiafu, Q., Dongyun, C., Najun, L. et al. (2018). Small 14: 1800343.

      21 21 Zhao, Y., Xie, X., Zhang, J. et al. (2015). Chem. Eur. J. 21: 15908–15913.

      22 22 Yin, X.‐P., Wang, H.‐J., Tang, S.‐F. et al. (2018). Angew. Chem. Int. Ed. 57: 9382–9386.

      23 23 Mochalin, V.N., Shenderova, O., Ho, D., and Gogotsi, Y. (2011). Nat. Nanotechnol. 7: 11.

      24 24 Zeiger, M., Jäckel, N., Mochalin, V.N., and Presser, V. (2016). J. Mater. Chem. A 4: 3172–3196.

      25 25 Liu, J., Yue, Y., Liu, H. et al. (2017). ACS Catal. 7: 3349–3355.

      26 26 Roldán, L., Benito, A.M., and García‐Bordejé, E. (2015). J. Mater. Chem. A 3: 24379–24388.

      27 27 Tian, S., Fu, Q., Chen, W. et al. (2018). Nat. Commun. 9: 2353.

      28 28 Bavykina, A.V., Goesten, M.G., Kapteijn, F. et al. (2015). ChemSusChem 8: 809–812.

      29 29 Beine, A.K., Kruger, A.J.D., Artz, J. et al. (2018). Green Chem. 20: 1316–1322.

      30 30 Soorholtz, M., Jones, L.C., Samuelis, D. et al. (2016). ACS Catal. 6: 2332–2340.

      31 31 Jens, A., Sabrina, M., and Regina, P. (2015). ChemSusChem 8: 672–679.

      32 32 Bavykina, A.V., Rozhko, E., Goesten, M.G. et al. (2016). ChemCatChem 8: 2217–2221.

      33 33 Kamiya, K., Kamai, R., Hashimoto, K., and Nakanishi, S. (2014). Nat. Commun. 5: 5040.

      34 34 Yamaguchi, S., Kamiya, K., Hashimoto, K., and Nakanishi, S. (2017). Chem. Commun. 53: 10437–10440.

      35 35 Ryo, K., Kazuhide, K., Kazuhito, H., and Shuji, N. (2016). Angew. Chem. Int. Ed. 55: 13184–13188.

      36 36 Titirici, M.‐M. and Antonietti, M. (2010). Chem. Soc. Rev. 39: 103–116.

      37 37 Makowski, P., Demir Cakan, R., Antonietti, M. et al. (2008). Chem. Commun. https://doi.org/10.1039/B717928F.

      38 38 Titirici, M.‐M., Antonietti, M., and Thomas, A. (2006). Chem. Mater. 18: 3808–3812.

      39 39 Xiong, H., Pham, H.N., and Datye, A.K. (2013). J. Catal. 302: 93–100.

      40 40 Graham, U.M., Jacobs,

Скачать книгу