Myths and Marvels of Astronomy. Richard Anthony Proctor
Чтение книги онлайн.
Читать онлайн книгу Myths and Marvels of Astronomy - Richard Anthony Proctor страница 14
Next let us consider the height of the pyramid. According to the best modern measurements, it would seem that the height when (if ever) the pyramid terminated above in a pointed apex, must have been about 486 feet. And from the comparison of the best estimates of the base side with the best estimates of the height, it seems very likely indeed that the intention of the builders was to make the height bear to the perimeter of the base the same ratio which the radius of a circle bears to the circumference. Remembering the range of difference in the base measures it might be supposed that the exactness of the approximation to this ratio could not be determined very satisfactorily. But as certain casing stones have been discovered which indicate with considerable exactness the slope of the original plane-surfaces of the pyramid, the ratio of the height to the side of the base may be regarded as much more satisfactorily determined than the actual value of either dimension. Of course the pyramidalists claim a degree of precision indicating a most accurate knowledge of the ratio between the diameter and the circumference of a circle; and the angle of the only casing stone measured being diversely estimated at 51° 50' and 51° 52-1⁄4', they consider 50° 51' 14·3" the true value, and infer that the builders regarded the ratio as 3·14159 to 1. The real fact is, that the modern estimates of the dimensions of the casing stones (which, by the way, ought to agree better if these stones are as well made as stated) indicate the values 3·1439228 and 3·1396740 for the ratio; and all we can say is, that the ratio really used lay probably between these limits, though it may have been outside either. Now the approximation of either is not remarkably close. It requires no mathematical knowledge at all to determine the circumference of a circle much more exactly. 'I thought it very strange,' wrote a circle-squarer once to De Morgan (Budget of Paradoxes, p. 389), 'that so many great scholars in all ages should have failed in finding the true ratio, and have been determined to try myself.' 'I have been informed,' proceeds De Morgan, 'that this trial makes the diameter to the circumference as 64 to 201, giving the ratio equal to 3·1410625 exactly. The result was obtained by the discoverer in three weeks after he first heard of the existence of the difficulty. This quadrator has since published a little slip and entered it at Stationers' Hall. He says he has done it by actual measurement; and I hear from a private source that he uses a disc of twelve inches diameter which he rolls upon a straight rail.' The 'rolling is a very creditable one; it is as much below the mark as Archimedes was above it. Its performer is a joiner who evidently knows well what he is about when he measures; he is not wrong by 1 in 3000.' Such skilful mechanicians as the builders of the pyramid could have obtained a closer approximation still by mere measurement. Besides, as they were manifestly mathematicians, such an approximation as was obtained by Archimedes must have been well within their power; and that approximation lies well within the limits above indicated. Professor Smyth remarks that the ratio was 'a quantity which men in general, and all human science too, did not begin to trouble themselves about until long, long ages, languages, and nations had passed away after the building of the great pyramid; and after the sealing up, too, of that grand primeval and prehistoric monument of the patriarchal age of the earth according to Scripture.' I do not know where the Scripture records the sealing up of the great pyramid; but it is all but certain that during the very time when the pyramid was being built astronomical observations were in progress which, for their interpretation, involved of necessity a continual reference to the ratio in question. No one who considers the wonderful accuracy with which, nearly two thousand years before the Christian era, the Chaldæans had determined the famous cycle of the Saros, can doubt that they must have observed the heavenly bodies for several centuries before they could have achieved such a success; and the study of the motions of the celestial bodies compels 'men to trouble themselves' about the famous ratio of the circumference to the diameter.
We now come upon a new relation (contained in the dimensions of the pyramid as thus determined) which, by a strange coincidence, causes the height of the pyramid to appear to symbolise the distance of the sun. There were 5813 pyramid inches, or 5819 British inches, in the height of the pyramid according to the relations already indicated. Now, in the sun's distance, according to an estimate recently adopted and freely used,[22] there are 91,400,000 miles or 5791 thousand millions of inches—that is, there are approximately as many thousand millions of inches in the sun's distance as there are inches in the height of the pyramid. If we take the relation as exact we should infer for the sun's distance 5819 thousand millions of inches, or 91,840,000 miles—an immense improvement on the estimate which for so many years occupied a place of honour in our books of astronomy. Besides, there is strong reason for believing that, when the results of recent observations are worked out, the estimated sun distance will be much nearer this pyramid value than even to the value 91,400,000 recently adopted. This result, which one would have thought so damaging to faith in the evidence from coincidence—nay, quite fatal after the other case in which a close coincidence had appeared by merest accident—is regarded by the pyramidalist as a perfect triumph for their faith.
They connect it with another coincidence, viz. that, assuming the height determined in the way already indicated, then it so happens that the height bears to half a diagonal of the base the ratio 9 to 10. Seeing that the perimeter of the base symbolises the annual motion of the earth round the sun, while the height represents the radius of a circle with that perimeter, it follows that the height should symbolise the sun's distance. 'That line, further,' says Professor Smyth (speaking on behalf of Mr. W. Petrie, the discoverer of this relation), 'must represent' this radius 'in the proportion of 1 to 1,000,000,000' (or ten raised to power nine), 'because amongst other reasons 10 to 9 is practically the shape of the great pyramid.' For this building 'has such an angle at the corners, that for every ten units its structure advances inwards on the diagonal of the base, it practically rises upwards, or points to sunshine' (sic) 'by nine. Nine, too, out of the ten characteristic parts (viz. five angles and five sides) being the number of those parts which the sun shines on in such a shaped pyramid, in such a latitude near the equator, out of a high sky, or, as the Peruvians say, when the sun sets on the pyramid with all its rays.' The coincidence itself on which this perverse reasoning rests is a singular one—singular, that is, as showing how close an accidental coincidence may run. It amounts to this, that if the number of days in the year be multiplied by 100, and a circle be drawn with a circumference containing 100 times as many inches as there are days in the year, the radius of the circle will be very nearly one 1,000,000,000th part of the sun's distance. Remembering that the pyramid inch is assumed to be one 500,000,000th part of the earth's diameter, we shall not be far from the truth in saying that, as a matter of fact, the earth by her orbital motion traverses each day a distance equal to two hundred times her own diameter. But, of course, this relation is altogether accidental. It has no real cause in nature.[23]
Such relations show that mere numerical coincidences, however close, have little weight as evidence, except where they occur in series. Even then they require to be very cautiously regarded, seeing that the history of science records many instances where the apparent law of a series has been found to be falsified when the theory has been extended. Of course this reason is not quoted in order to throw doubt on the supposition that the height of the pyramid was intended to symbolise the sun's distance. That supposition is simply inadmissible if the hypothesis, according to which the height was already independently determined in another way, is admitted. Either hypothesis might be admitted were we not certain that the sun's distance could not possibly have been known to the builders of the pyramid; or both hypotheses may be rejected: but to admit both is out of the question.
Considering the multitude of dimensions of length, surface, capacity, and position, the great number of shapes, and the variety of material existing within the pyramid, and considering, further, the enormous number of relations (presented by modern science) from among which to choose, can it be wondered