Concise Handbook of Fluorocarbon Gases. Sina Ebnesajjad

Чтение книги онлайн.

Читать онлайн книгу Concise Handbook of Fluorocarbon Gases - Sina Ebnesajjad страница 18

Автор:
Жанр:
Серия:
Издательство:
Concise Handbook of Fluorocarbon Gases - Sina  Ebnesajjad

Скачать книгу

Zusammen Cis R-1234ze(E) CF3-CH=CHF Entgegen Trans R-1234ze(Z) CF3-CH=CHF Zusammen Cis R-1234yf CF3-CF=CH2

      IUPAC = International Union of Pure and Applied Chemists

      ACS = American Chemical Society

Chemical structures of 1(E)-1,2,3,3-tetrafluoro-1-propene, or HFO-1234ye(E) and 1(Z)-1,2,3,3-tetrafluoro-1-propene, or HFO-1234ye(Z).

      Figure 2.1 Two examples of isomeric hydrofluorooelefin [10].

      In this book the term fluoropolymer describes fluorinated polymers and copolymers of a few olefinic monomers that are consumed in significant commercial scale. These monomers include tetrafluoroethylene (CF2=CF2), vinylidene fluoride (CF2=CH2) and chlorotrifluoroethylene (CFCl=CF2) and vinyl fluoride (CHF=CH2). The polymers of the last two are produced at significantly lower volumes than the first two monomers but have been included because of the importance of their applications. Generally, an increase in fluorine content of polymer enhances the desirable properties for which fluorinated polymers are known (Table 2.7).

      Fluoroelastomers consist of a number of high performance synthetic rubbers that are partially or fully fluorinated. Fluoroelastomers are made by copolymerizing various combinations of vinylidene fluoride (CH2=CF2), hexafluoropropylene (CF2=CFCF3), chlorotrifluoroethylene (CF2=CFCl), and tetrafluoroethylene (CF2=CF2). These fluorinated elastomers have outstanding resistance to oxygen, ozone, and heat and to swelling by oils, chlorinated solvent, and fuels.

      Table 2.7 Effect of increasing fluorine content in polymers.

Property Impact
Chemical resistance Up
Melting point Up
Coefficient of friction Down
Thermal stability Up
Dielectric constant Down
Dissipation factor Down
Volume and surface resistivity Up
Mechanical properties Down
Flame resistance Up
Resistance to weathering Up

       2.4.1 Fluoropolymers

      The inception of fluoropolymers as a group dates back to the serendipitous discovery of polytetrafluoroethylene (PTFE) in a DuPont laboratory by Roy Plunket. His research program was aimed at the discovery and development of new refrigerants. The initial testing of the waxy white powder found in a tetrafluoroethylene gas cylinder revealed something unusual. The powder had a high melting point, was insoluble and was unaffected by any chemical and intractable as a thermoplastic. Manhattan Project’s needs for chemical resistance materials led to the first application of PTFE.

      Following the successful introduction of PTFE, produced in a pilot plant, into the processing equipment for uranium manufacturing and purification, interest in this plastic began gathering. The DuPont Company in West Virginia, USA in 1946 built the first commercial plant. The story of the development fluoropolymers has been covered, in detail, in other publications [12].

      The basic properties of PTFE may be justifiably called extreme (Table 2.8). The properties and characteristics of PTFE include high chemical resistance, low and high temperature capability, resistance to weathering, low friction, electrical and thermal insulation, and low friction or slipperiness. One drawback of this polymer is its relative softness, compared to engineering polymers, resulting in cold flow and ease of abrasion both of which are undesirable for many applications. Fillers are incorporated in PTFE to enhance its hardness.

      The first fluoropolymer PTFE was quite peculiar in that it would not flow upon melting. It could not be processed by typical melt processing techniques such as extrusion. Metal powder processing techniques were modified and adopted to fabricate parts from PTFE examples of which include modified compression molding, ram extrusion and paste extrusion. Afterward a number of melt processible fluoropolymers were developed in the decades since the Second World War [13, 14].

      Table 2.8 Fundamental properties of polytetrafluoroethylene.

High melting point, 342°C
Exceptional thermal stability
Useful mechanical properties at extremely low and high temperatures (-260 to 260°C)
Insolubility
Chemical inertness
Low coefficient of friction
Low dielectric constant/dissipation factor
Low water ab/adsorptivity
Excellent outdoor weatherability
Flame resistance (limiting oxygen index = 95)
Exceptional Purity

      The third largest volume family of fluoropolymers is based on vinylidene fluoride (VDF) hompolymers and copolymers. These thermoplastics are processed by normal melt processing techniques such as extrusion, film blowing and various molding

Скачать книгу