Biological Mechanisms of Tooth Movement. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Biological Mechanisms of Tooth Movement - Группа авторов страница 41

Biological Mechanisms of Tooth Movement - Группа авторов

Скачать книгу

and Iwanaga, T. (1990) Nerve terminals in human periodontal ligament as demonstrated by immunohistochemistry for neurofilament protein (NFP) and S‐100 protein. Archives of Histology and Cytology 53, 259–265.

      50 Maeda, T., Ochi, K., Nakakura‐Ohshima, K. et al. (1999) The Ruffini ending as the primary mechanoreceptor in the periodontal ligament: its morphology, cytochemical features, regeneration, and development. Critical Reviews in Oral Biology and Medicine 10, 307–327.

      51 Maltha, J. C. and Von den Hoff, J. W. (2017) Biological basis for orthdontic relapse, in Stabiity, Retention and Relapse in Orthodontics (eds C. Katsaros and T. Eliades). Quinessence, Berlin. Pp. 15–28.

      52  Marson, A., Rock, M. J., Cain, S. A. et al. (2005) Homotypic fibrillin‐1 interactions in microfibril assembly. The Journal of Biological Chemistry 280, 5013–5021.

      53 Martino, F., Perestrelo, A. R., Vinarský, V. et al. (2018) Cellular mechanotransduction: from tension to function. Frontiers in Physiology 9, 824. doi:10.3389/fphys.2018.00824.

      54 McGeachie, J. and Tennant, M. (1997) Growth factors and their implications for clinicians: a brief review. Australian Dental Journal 42(6), 375–380. doi:10.1111/j.1834‐7819.1997.tb06081.x.

      55 Meikle, M. C. (2006) The tissue, cellular and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. European Journal of Orthodontics 28(3), 221–240. doi:10.1093/ejo/cjl001.

      56 Militi, A., Cutroneo, G., Favaloro, A. et al. (2019) An immunofluorescence study on VEGF and extracellular matrix proteins in human periodontal ligament during tooth movement. Heliyon 5(10), e02572. doi:10.1016/j.heliyon.2019.e02572.

      57 Mundy, G. R. (1993) Cytokines and growth factors in the regulation of bone remodeling. Journal of Bone and Mineral Research 8(Suppl. 2), S505–510. doi:10.1002/jbmr.5650081315.

      58 Murdoch, C., Giannoudis, A. and Lewis, C. E. (2004) Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104(8), 2224–2234. doi:10.1182/blood‐2004‐03‐1109.

      59 Nakamura, Y., Noda, K., Shimoda, S. et al. (2008) Time‐lapse observation of rat periodontal ligament during function and tooth movement, using microcomputed tomography. European Journal of Orthodontics 30(3), 320–326. doi:10.1093/ejo/cjm133.

      60 Nanci, A. and Bosshardt, D. D. (2006) Structure of periodontal tissues in health and disease. Periodontology 200040, 11–28. doi:10.1111/j.1600‐0757.2005.00141.x.

      61 Ortún‐Terrazas, J., Cegoñino, J., Santana‐Penín, U. et al. (2018) Approach towards the porous fibrous structure of the periodontal ligament using micro‐computerized tomography and finite element analysis. Journal of the Mechanical Behaviour of Biomedical Materials 79, 135–149. doi:10.1016/j.jmbbm.2017.12.022.

      62 Pilon, J. J., Kuijpers‐Jagtman, A. M. and Maltha, J. C. (1996) Magnitude of orthodontic forces and rate of bodily tooth movement. An experimental study. American Journal of Orthodontics and Dentofacial Orthopedics 110(1), 16–23. doi:10.1016/s0889‐5406(96)70082‐3.

      63 Roodman, G. D. (1993) Role of cytokines in the regulation of bone resorption. Calcified Tissue International 53(Suppl. 1), S94–98. doi:10.1007/bf01673412.

      64 Salomão, M. F., Reis, S. R., Vale, V. L. et al. (2014) Immunolocalization of FGF‐2 and VEGF in rat periodontal ligament during experimental tooth movement. Dental Press Journal of Orthodontics 19(3), 67–74. doi:10.1590/2176‐9451.19.3.067‐074.oar.

      65 Selliseth, N. J. and Selvig, K. A. (1994) The vasculature of the periodontal ligament: a scanning electron microscopic study using corrosion casts in the rat. Journal of Periodontology 65, 1079–1087.

      66 Snoek‐van Beurden, P. A. M. and Von den Hoff, J. W. (2005) Zymographic techniques for the analysis of matrix metalloproteinases and their inhibitors. BioTechniques 38(1), 73–83. doi:10.2144/05381RV01.

      67 Strydom, H., Maltha, J. C., Kuijpers‐Jagtman, A. M. and Von den Hoff, J. W. (2012) The oxytalan fibre network in the periodontium and its possible mechanical function. Archives of Oral Biology 57, 1003–1011.

      68 Suda, T., Takahashi, N., Udagawa, N. et al. (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocrine Reviews 20(3), 345–357. doi:10.1210/edrv.20.3.0367.

      69 Svensson, L., Oldberg, A., & Heinegård, D. (2001) Collagen binding proteins. Osteoarthritis and Cartilage 9 Suppl A, S23–S28.

      70 Takahashi, N., Ejiri, S., Yanagisawa, S. and Ozawa, H. (2007) Regulation of osteoclast polarization. Odontology 95(1), 1–9. doi:10.1007/s10266‐007‐0071‐y.

      71 Teitelbaum, S. L. (2000) Bone resorption by osteoclasts. Science 289(5484), 1504–1508. doi:10.1126/science.289.5484.1504.

      72 Tokuhara, C. K., Santesso, M. R., Oliveira, G. S. N. et al. (2019) Updating the role of matrix metalloproteinases in mineralized tissue and related diseases. Journal of Applied Oral Science 27, e20180596. doi:10.1590/1678‐7757‐2018‐0596.

      73 Tresguerres, F. G. F., Torres, J., López‐Quiles, J. et al. (2020) The osteocyte: A multifunctional cell within the bone. Annals of Anatomy 227, 151422. doi:10.1016/j.aanat.2019.151422.

      74 Tse, L. H. and Wong, Y. H. (2019) GPCRs in Autocrine and Paracrine Regulations. Frontiers in Endocrinology 10, 428. doi:10.3389/fendo.2019.00428.

      75 Tsuge, A., Noda, K. and Nakamura, Y. (2016) Early tissue reaction in the tension zone of PDL during orthodontic tooth movement. Archives of Oral Biology 65, 17–25. doi:10.1016/j.archoralbio.2016.01.007.

      76 Uhlir, R., Mayo, V., Lin, P. H. et al. (2017) Biomechanical characterization of the periodontal ligament: Orthodontic tooth movement. The Angle Orthodontist 87(2), 183–192. doi:10.2319/092615‐651.1.

      77 van Driel, W. D., van Leeuwen, E. J., Von den Hoff, J. W. et al. (2000) Time‐dependent mechanical behaviour of the periodontal ligament. Proceedings of the Institute of Mechanical Engineers H 214(5), 497–504. doi:10.1243/0954411001535525.

      78 van Leeuwen, E. J., Maltha, J. C. and Kuijpers‐Jagtman, A. M. (1999) Tooth movement with light continuous and discontinuous forces in beagle dogs. European Journal of Oral Sciences 107(6), 468–474. doi:10.1046/j.0909‐8836.1999.eos107608.x.

      79 van Leeuwen, E. J., Maltha, J. C., Kuijpers‐Jagtman, A. M. and van 't Hof, M. A. (2003) The effect of retention on orthodontic relapse after the use of small continuous or discontinuous forces. An experimental study in beagle dogs. European Journal of Oral Sciences 111(2), 111–116. doi:10.1034/j.1600‐0722.2003.00024.x.

      80 Vansant, L., Cadenas De Llano‐Pérula, M., Verdonck, A. and Willems, G. (2018) Expression of biological mediators during orthodontic tooth movement: A systematic review. Archives of Oral Biology 95, 170–186. doi:10.1016/j.archoralbio.2018.08.003.

      81 Verstappen, J. and Von den Hoff, J. W. (2006) Tissue inhibitors of metalloproteinases (TIMPs): their biological functions and involvement in oral disease. Journal of Dental Research 85(12), 1074–1084. doi:10.1177/154405910608501202.

      82 Viecilli, R. F., Kar‐Kuri, M. H., Varriale, J. et al. (2013) Effects of initial stresses and time on orthodontic external root resorption. Journal of Dental Research 92(4), 346–351. doi:10.1177/0022034513480794.

      83 Viecilli, R. F., Katona, T. R., Chen, J. et al. (2008) Three‐dimensional mechanical environment of orthodontic tooth movement and root resorption. American Journal

Скачать книгу