3D Printing for Energy Applications. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу 3D Printing for Energy Applications - Группа авторов страница 23
![3D Printing for Energy Applications - Группа авторов 3D Printing for Energy Applications - Группа авторов](/cover_pre920452.jpg)
84 84 Obielodan, J., & Stucker, B. (2014). A fabrication methodology for dual‐material engineering structures using ultrasonic additive manufacturing. International Journal of Advanced Manufacturing Technology, 70(1–4), 277–284. doi:10.1007/s00170‐013‐5266‐5
85 85 Dapino, M. J. (2014). Smart structure integration through ultrasonic additive manufacturing. ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014, 2. 10.1115/SMASIS20147710.
86 86 Hehr, A., Wenning, J., Terrani, K., Babu, S. S., & Norfolk, M. (2017). Five‐axis ultrasonic additive manufacturing for nuclear component manufacture. JOM, 69(3), 485–490. doi:10.1007/s11837‐016‐2205‐6
87 87 Petrie, C. M. C. M., Sridharan, N., Subramanian, M., Hehr, A., Norfolk, M., & Sheridan, J. (2019). Embedded metallized optical fibers for high temperature applications. Smart Materials and Structures, 28(5), 055012‐1–055012‐33. doi:10.1088/1361‐665X/ab0b4e
88 88 Bournias‐Varotsis, A., Friel, R. J., Harris, R. A., & Engstrøm, D. S. (2018). Ultrasonic Additive Manufacturing as a form‐then‐bond process for embedding electronic circuitry into a metal matrix. Journal of Manufacturing Processes, 32, 664–675. doi:10.1016/j.jmapro.2018.03.027
89 89 Sriraman, M. R., Babu, S. S., & Short, M. (2010). Bonding characteristics during very high power ultrasonic additive manufacturing of copper. Scripta Materialia, 62(8), 560–563. doi:10.1016/j.scriptamat.2009.12.040
90 90 Janaki Ram, G. D., Yang, Y., & Stucker, B. E. (2006). Effect of process parameters on bond formation during ultrasonic consolidation of aluminum alloy 3003. Journal of Manufacturing Systems, 25(3), 221–238. doi:10.1016/S0278‐6125(07)80011‐2
91 91 Fabrisonic. (n.d.). Embedding sensors and electronics. Retrieved from https://fabrisonic.com/applications/
92 92 Gonzalez‐Gutierrez, J., Cano, S., Schuschnigg, S., Kukla, C., Sapkota, J., & Holzer, C. (2018). Additive manufacturing of metallic and ceramic components by the material extrusion of highly‐filled polymers: A review and future perspectives. Materials, 11(5), 840‐1–840‐36. doi:10.3390/ma11050840
93 93 Pedersen, D. B., Andersen, S. A., & Hansen, H. N. (2019). Measurements in Additive Manufacturing (pp. 369–397). USA: Springer. doi:10.1007/978‐981‐10‐4938‐5_13
94 94 Holo Additive Manufacturing. (n.d.). PureForm Technology. Retrieved from https://holoam.com/technology/
95 95 Salcedo, E., Baek, D., Berndt, A., & Ryu, J. E. (2018). Simulation and validation of three dimension functionally graded materials by material jetting. Additive Manufacturing, 22, 351–359. doi:10.1016/j.addma.2018.05.027
96 96 Sufiiarov, V., Polozov, I., Kantykov, A., & Khaidorov, A. (2020). Binder jetting additive manufacturing of 420 stainless steel: Densification during sintering and effect of heat treatment on microstructure and hardness. Materials Today: Proceedings.
97 97 Thompson, Y., Gonzalez‐Gutierrez, J., Kukla, C., & Felfer, P. (2019). Fused filament fabrication, debinding and sintering as a low cost additive manufacturing method of 316L stainless steel. Additive Manufacturing, 30, 100861.
98 98 Larsen, U. D., Signund, O., & Bouwsta, S. (1997). Design and fabrication of compliant micromechanisms and structures with negative Poisson's ratio. Journal of Microelectromechanical Systems, 6(2), 99–106.
99 99 Takezawa, A., Kobashi, M., & Kitamura, M. (2015). Porous composite with negative thermal expansion obtained by photopolymer additive manufacturing. APL Materials, 3(7), 76103.
100 100 Andersen, P. R., Henríquez, V. C., & Aage, N. (2019). Shape optimization of micro‐acoustic devices including viscous and thermal losses. Journal of Sound and Vibration, 447, 120–136.
101 101 Wu, J., Aage, N., Westermann, R., & Sigmund, O. (2017). Infill optimization for additive manufacturing: Approaching bone‐like porous structures. IEEE Transactions on Visualization and Computer Graphics, 24(2), 1127–1140.
102 102 Martin, J. J., Fiore, B. E., & Erb, R. M. (2015). Designing bioinspired composite reinforcement architectures via 3D magnetic printing. Nature Communications, 6, 8641‐1–8641‐7. doi:10.1038/ncomms9641
103 103 Abel, J., Scheithauer, U., Janics, T., Hampel, S., Cano, S., Müller‐Köhn, A., . . . Moritz, T. (2019). Fused Filament Fabrication (FFF) of metal‐ceramic components. JoVE (Journal of Visualized Experiments), 143, e57693.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.