Industrial Carbon and Graphite Materials. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Industrial Carbon and Graphite Materials - Группа авторов страница 59

Industrial Carbon and Graphite Materials - Группа авторов

Скачать книгу

Fujimoto, K., Mochida, I., Todo, Y. et al. (1989). Carbon 27: 909–917.

      20 20 Kawanon, Y., Fukuda, T., Kaawrada, T. et al. (1999). Carbon 37: 555–560.

      21 21 Perruchoud, R., Fischer, W., and Letizia, I. (2011). Tanso 249: 169–173.

      22 22 Frohs, W. and Rößner, F. (2015). Tanso 267: 1–7.

      23 23 Elkem Materials (2003). Electrical calcining furnace, WO 03/027012 A1, (J.A. Aune, L.P. Larsen, P.O. Nos, G. Aas).

      24 24 Kawamura, R. and Wakasa, T. (1997). Improvement in the calcination process of anthracite for cathode carbon blocks, light metals. 12th TMS Annual Meeting, Orlando, FL, USA.

      25 25 Frohs, W. and Meyer zu Reckendorf, R. (1998). EUROCARBON, Strasbourg, 171–172.

      26 26 Mallison, H. (1950). Bitumen, Teere, Asphalte und verwandte Stoffe 1: 313.

      27 27 Gemmeke, W., Collin, G., and Zander, M. (1978). Light Metals 1978, vol. 1 (ed. J.J. Miller), 355. New York, NY: AIME.

      28 28 Wagner, M.H., Jäger, H., Letizia, I., and Wilhelmi, G. (1988). Fuel 67: 792–797.

      29 29 Turner, N.R. (1988). International Conference on Carbon, Newcastle, 470.

      30 30 Steward, N.I. and Halley, P.H. (1994). Light Metals 1994 (ed. A.T. Tabereaux), 517–524. Warrendale, PA: TMS.

      31 31 Wallouch, R.W., Murty, H.N., and Heintz, E.A. (1972). Carbon 10: 729.

      32 32 Briggs, D.K.H. (1964). Fuel 43: 439–443.

      33 33 Lewis, R.T., Riffle, D.M., and Singer, L.S. (1986). International Conference on Carbon, Baden‐Baden, 28–30.

      34 34 Zander, M., Alscher, A., Boenigk, W., and Haenel, M.W. (1991). Light Metals 1991 (ed. E.L. Rooy), 597. Warrendale, PA: TMS.

      35 35 Newman, J.W. (1979). Light Metals 1980 (ed. C.J. McMinn), 503. New York, NY: AIME.

      36 36 Siemens‐Plania AG (1958). Verfahren zur Herstellung von Kohle‐ und Graphitformkörpern, DE 969619 (F. Jeitner, E. Nedopil).

      37 37 Hoechst (1953). Verfahren zur Herstellung von Kohleelektroden, DE 900569 (O. Peter).

      38 38 Annual Report 2014, Himadri Chemicals & Industries Linited, Ruby House 8., Kolkata 700 001, India.

      39 39 Dwivedi, H., Mathur, R.B., Dhami, T.L., Bahl, O.P., Monthioux, M., Sharma, S.P. (2006). Carbon 44: 699–709.

      40 40 Machnikowski, J., Rutkowski, P., Diez, M.A., Anal, J. (2006). Appl. Pyrolysis 76: 80–87.

      41 41 Trick, K.A., Saliba, T. E. (1995). Carbon 23: 1509–1515.

      42 42 Fitzer, E., Schäfer, W. (1970). Carbon 8: 353–364.

      43 43 Gardzielle, A., Pilato, E.A., Knop, A (2002). Phenolic Resins 2nd ed., Berlin: Springer.

      44 44 Lenghaus, K., Qiao, G.G., Solomon, D.H. (2001). Polymer 42: 3355–3362.

      45 45 Machnikowski, J., Rutkowski, P., Diez, M.A., Anal, J. (2006). Appl. Pyrolysis 76: 80–87.

      46 46 Horikawa, T., Ogawa, K., Mizuno, K., Hayashi, J., Muroyama, K. (2003). Carbon 41: 465–472.

      47 47 Sobera, M., Hetper, J. (2003). J. Chromatogr. A 993: 131–135.

      48 48 Liedtke, V., Hüttinger, K.J. (1996). Carbon 34: 1057–1086.

      49 49 Riesz, C.H., Susman, S. (1960). Proc. Conf. Carbon 4th 1959: 609.

      Further Reading

      1 Frohs, W. and Roessner, F. (2015, N0267). Expansion of carbon artifacts during graphitization – an industrial issue. Carbon: 1–7.

      Note

      1 † Deceased.

       Heinrich Predel1 and Srini Srivatsan2

       1 Engineering Consultant, Karlsruhe, Germany

       2 Heavy Oils & Coking Technology, Foster Wheeler USA Corporation, Houston TX, USA

      6.1.2.1. Introduction

      Petroleum coke is a grayish‐black solid residue with high carbon content. It is obtained during the thermal conversion process in crude oil processing. Although petroleum coke has been known for more than 110 years, both production and its specific application and improvement have seen an increasing boom only during the last 50 years. Petroleum coke production rate has grown from 60 × 106 t/a in 2006 to 110 × 106 t/a in 2013. It is anticipated that by the year 2017, about 150 × 106 t/a petroleum coke will be produced in oil refineries. The majority of this quantity (92%) is obtained from delayed coking units. In other refineries processing heavy oil, some investments have been made in flexicoking units, whereas no new fluid coking units have been installed recently.

      6.1.2.2. Physical and Chemical Properties

      6.1.2.2.1 Physical Properties

      Another basic form of petroleum coke is calcined coke. Calcined coke is a product derived from green coke. Here, the hydrocarbons have been removed by heating green coke under reducing conditions in kilns or hearths to over 1300 °C.

      The classification of petroleum coke types derived from delayed cokers into the following categories based on its usage:

       Fuel grade (cement manufacturing, power generation).

       Anode grade (consumed as anodes in aluminum industry).

       Electrode grade (used in electric arc furnace [EAF] during steel manufacture).

      Petroleum coke can also

Скачать книгу